An efficient algebraic multigrid preconditioner for a fast multipole boundary element method

被引:9
作者
Of, G. [1 ]
机构
[1] Graz Univ Technol, Inst Computat Math, A-8010 Graz, Austria
关键词
boundary element method; algebraic multigrid; fast multipole method;
D O I
10.1007/s00607-008-0002-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fast boundary element methods still need good preconditioning techniques for an almost optimal complexity. An algebraic multigrid method is presented for the single layer potential using the fast multipole method. The coarsening is based on the cluster structure of the fast multipole method. The effort for the construction of the nearfield part of the coarse grid matrices and for an application of the multigrid preconditioner is of the same almost optimal order as the fast multipole method itself.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 34 条
[1]   Hierarchical LU decomposition-based preconditioners for BEM [J].
Bebendorf, M .
COMPUTING, 2005, 74 (03) :225-247
[2]   Adaptive low-rank approximation of collocation matrices [J].
Bebendorf, M ;
Rjasanow, S .
COMPUTING, 2003, 70 (01) :1-24
[3]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[4]   THE ANALYSIS OF MULTIGRID ALGORITHMS FOR PSEUDODIFFERENTIAL-OPERATORS OF ORDER MINUS ONE [J].
BRAMBLE, JH ;
LEYK, Z ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1994, 63 (208) :461-478
[5]  
Dahmen W., 1993, Adv. Comput. Math., V1, P259
[6]  
FUNKEN SA, 1997, APPL ANAL, V67, P327
[7]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[8]  
Greengard L. F., 1987, RAPID EVALUATION POT
[9]   Coarsening of boundary-element spaces [J].
Hackbusch, W. ;
Loehndorf, M. ;
Sauter, S. A. .
COMPUTING, 2006, 77 (03) :253-273
[10]  
Hackbusch W, 1999, COMPUTING, V62, P89, DOI 10.1007/s006070050015