UNIQUE CONTINUATION FOR THE MAGNETIC SCHRODINGER OPERATOR WITH SINGULAR POTENTIALS

被引:3
作者
Arrizabalaga, Naiara [1 ]
Zubeldia, Miren [2 ]
机构
[1] Univ Basque Country, Dept Matemat, UPV EHU, E-48080 Bilbao, Spain
[2] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
基金
欧洲研究理事会;
关键词
Unique continuation theorem; Carleman estimates; magnetic Schrodinger operator; singular potentials; ELECTROMAGNETIC HELMHOLTZ-EQUATION; DIFFERENTIAL-EQUATIONS; INEQUALITIES; THEOREM;
D O I
10.1090/proc12728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study unique continuation theorems for the magnetic Schrodinger equation via Carleman estimates. We use integration by parts techniques in order to show these estimates. We consider electric and magnetic potentials with strong singularities at the origin and some decay at infinity.
引用
收藏
页码:3487 / 3503
页数:17
相关论文
共 20 条
[1]   A priori estimates for the Helmholtz equation with electromagnetic potentials in exterior domains [J].
Antonio Barcelo, Juan ;
Fanelli, Luca ;
Ruiz, Alberto ;
Vilela, Maricruz .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :1-19
[2]   The forward problem for the electromagnetic Helmholtz equation with critical singularities [J].
Antonio Barcelo, Juan ;
Vega, Luis ;
Zubeldia, Miren .
ADVANCES IN MATHEMATICS, 2013, 240 :636-671
[3]   WEIGHTED SOBOLEV INEQUALITIES AND UNIQUE CONTINUATION FOR THE LAPLACIAN PLUS LOWER ORDER TERMS [J].
BARCELO, B ;
KENIG, CE ;
RUIZ, A ;
SOGGE, CD .
ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (02) :230-245
[4]   Endpoint Strichartz estimates for the magnetic Schrodinger equation [J].
D'Ancona, Piero ;
Fanelli, Luca ;
Vega, Luis ;
Visciglia, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3227-3240
[5]  
Fanelli L., 2012, ARXIV12031771
[6]   COUNTEREXAMPLES TO STRICHARTZ ESTIMATES FOR THE MAGNETIC SCHRODINGER EQUATION [J].
Fanelli, Luca ;
Garcia, Andoni .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :213-234
[7]   Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators [J].
Fanelli, Luca .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :1-14
[8]   Magnetic virial identities, weak dispersion and Strichartz inequalities [J].
Fanelli, Luca ;
Vega, Luis .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :249-278
[9]   UNIQUE CONTINUATION FOR ELLIPTIC-OPERATORS - A GEOMETRIC VARIATIONAL APPROACH [J].
GAROFALO, N ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :347-366
[10]   MONOTONICITY PROPERTIES OF VARIATIONAL INTEGRALS, AP WEIGHTS AND UNIQUE CONTINUATION [J].
GAROFALO, N ;
LIN, FH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (02) :245-268