Drop properties and approximative compactness in Orlicz-Bochner function spaces

被引:4
|
作者
Gong, Wanzhong [1 ,2 ]
Shi, Zhongrui [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Anhui Normal Univ, Dept Math, Anhui Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
Orlicz-Bochner function spaces; Orlicz norm; Luxemburg norm; Radon-Nikodym property; drop property; weak* drop property; nearly strong convex; approximative compactness;
D O I
10.1016/j.jmaa.2008.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The representation of dual spaces of E-M (, X), owing to its extensive application, is given in this paper. Using the representation, we get the sufficient and necessary conditions of L-M(mu, X) possessing drop property, and extend the result of Hudzik and Wang [H. Hudzik, B. Wang, Approximative compactness in Orlicz spaces, J. Approx. Theory 95 (1998) 82-89]. Simultaneously, under some conditions, the weak* drop property in L-M (mu, X*) and L-M (mu, X)* is discussed. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 50 条
  • [1] Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application
    Shang, Shaoqiang
    Cui, Yunan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1377 - 1395
  • [2] Weak compactness in Kothe-Bochner spaces and Orlicz-Bochner spaces
    Nowak, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (01): : 73 - 86
  • [3] APPROXIMATIVE COMPACTNESS IN MUSIELAK-ORLICZ FUNCTION SPACES OF BOCHNER TYPE
    Shang, Shaoqiang
    Cui, Yunan
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (01): : 143 - 163
  • [4] Integration in Orlicz-Bochner Spaces
    Nowak, Marian
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [5] SMOOTHNESS AND APPROXIMATIVE COMPACTNESS IN ORLICZ FUNCTION SPACES
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 26 - 38
  • [6] WEAK APPROXIMATIVE COMPACTNESS OF HYPERPLANE AND ASPLUND PROPERTY IN MUSIELAK-ORLICZ-BOCHNER FUNCTION SPACES
    Shang, Shaoqiang
    Cui, Yunan
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01): : 327 - 346
  • [7] Noncreasy and uniformly noncreasy Orlicz-Bochner function spaces
    Shi, Zhongrui
    Liu, Chunyan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6153 - 6161
  • [8] Approximative compactness in Orlicz spaces
    Hudzik, H
    Wang, BX
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (01) : 82 - 89
  • [9] P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm
    Shang, Shaoqiang
    Cui, Yunan
    Fu, Yongqiang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 371 - 379
  • [10] MONOTONE POINTS IN ORLICZ-BOCHNER SEQUENCE SPACES
    Wanzhong Gong
    Zhongrui Shi
    AnalysisinTheoryandApplications, 2012, 28 (04) : 301 - 311