Mode properties of telecom wavelength InP-based high-(Q/V) L4/3 photonic crystal cavities

被引:9
作者
Rickert, L. [1 ]
Fritsch, B. [1 ]
Kors, A. [1 ]
Reithmaier, J. P. [1 ]
Benyoucef, M. [1 ]
机构
[1] Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol CI, Inst Nanostruct Technol & Analyt INA, Heinrich Plett Str 40, D-34132 Kassel, Germany
关键词
photonic crystal; telecom wavelength; quantum dots; spectroscopy; SINGLE QUANTUM-DOT; NANOCAVITIES; VISUALIZATION;
D O I
10.1088/1361-6528/ab8a8c
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present finite-difference time domain simulations and optical characterizations via micro-photoluminescence measurements of InP-based L4/3 photonic crystal cavities with embedded quantum dots (QDs) and designed for the M1 ground mode to be emitting at telecom C-band wavelengths. The simulated M1 Q-factor values exceed 10(6), while the M1 mode volume is found to be 0.33 x (lambda/n)(3), which is less than half the value of the M1 mode volume of a comparable L3 cavity. Low-temperature micro-photoluminescence measurements revealed experimental M1 Q-factor values on the order of 10(4) with emission wavelengths around 1.55 mu m. Weak coupling behavior of the QD exciton line and the M1 ground mode was achieved via temperature-tuning experiments.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Fine-tuned high-Q photonic-crystal nanocavity [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
OPTICS EXPRESS, 2005, 13 (04) :1202-1214
[2]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[3]   Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots [J].
Benyoucef, M. ;
Yacob, M. ;
Reithmaier, J. P. ;
Kettler, J. ;
Michler, P. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[4]   Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling [J].
Birowosuto, Muhammad Danang ;
Sumikura, Hisashi ;
Matsuo, Shinji ;
Taniyama, Hideaki ;
van Veldhoven, Peter J. ;
Noetzel, Richard ;
Notomi, Masaya .
SCIENTIFIC REPORTS, 2012, 2
[5]   Mode structure of the L3 photonic crystal cavity [J].
Chalcraft, A. R. A. ;
Lam, S. ;
O'Brien, D. ;
Krauss, T. F. ;
Sahin, M. ;
Szymanski, D. ;
Sanvitto, D. ;
Oulton, R. ;
Skolnick, M. S. ;
Fox, A. M. ;
Whittaker, D. M. ;
Liu, H.-Y. ;
Hopkinson, M. .
APPLIED PHYSICS LETTERS, 2007, 90 (24)
[6]   Resonant Excitation of a Quantum Dot Strongly Coupled to a Photonic Crystal Nanocavity [J].
Englund, Dirk ;
Majumdar, Arka ;
Faraon, Andrei ;
Toishi, Mitsuru ;
Stoltz, Nick ;
Petroff, Pierre ;
Vuckovic, Jelena .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[7]   Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity [J].
Gayral, B. ;
Gerard, J. M. .
PHYSICAL REVIEW B, 2008, 78 (23)
[8]   Quantum nature of a strongly coupled single quantum dot-cavity system [J].
Hennessy, K. ;
Badolato, A. ;
Winger, M. ;
Gerace, D. ;
Atatuere, M. ;
Gulde, S. ;
Faelt, S. ;
Hu, E. L. ;
Imamoglu, A. .
NATURE, 2007, 445 (7130) :896-899
[9]   Quantum information processing using quantum dot spins and cavity QED [J].
Imamoglu, A ;
Awschalom, DD ;
Burkard, G ;
DiVincenzo, DP ;
Loss, D ;
Sherwin, M ;
Small, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4204-4207
[10]   Two-photon interference from a bright single-photon source at telecom wavelengths [J].
Kim, Je-Hyung ;
Cai, Tao ;
Richardson, Christopher J. K. ;
Leavitt, Richard P. ;
Waks, Edo .
OPTICA, 2016, 3 (06) :577-584