Catalytic Methane Pyrolysis in Molten Alkali Chloride Salts Containing Iron

被引:84
作者
Kang, Dohyung [2 ]
Palmer, Clarke [1 ]
Mannini, Davide [1 ]
Rahimi, Nazanin [1 ]
Gordon, Michael J. [1 ]
Metiu, Horia [3 ]
McFarland, Eric W. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[2] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, South Korea
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
关键词
methane decomposition; bubble column reactor; molten salt; hydrogen; iron chloride; BUBBLE-COLUMN REACTOR; HYDROGEN-PRODUCTION; THERMAL-DECOMPOSITION; SURFACE-TENSION; CO2; MITIGATION; GAS; NANOPARTICLES; CONVERSION; BEHAVIOR; CARBONS;
D O I
10.1021/acscatal.0c01262
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mixtures of molten iron-sodium-potassium chloride salts are found to be catalytic for methane pyrolysis. In a differential bubble column reactor, the apparent activation energy of the molten salt decreases from 301 kJ/mol for the eutectic NaCl-KCl to 171 kJ/mol for 3 wt % of iron-added as FeCl3. The solid carbon produced in the iron-containing salt mixture has a graphitic structure which is distinct from the more disordered carbon produced in the iron-free eutectic, suggesting a different solid carbon formation pathway. Results from H-D exchange investigations are consistent with a different reaction pathway for methane pyrolysis in the iron-containing NaCl-KCl melt than in the melt without Fe. The activity of the salt mixture was stable for over 50 h, producing molecular hydrogen and separable solid carbon. It is likely that the activity is due to the presence of Fe in molecular ions stabilized in the NaCl-KCl melt that facilitate the C-H bond activation in methane.
引用
收藏
页码:7032 / 7042
页数:11
相关论文
共 52 条
[1]   Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen [J].
Abanades, Alberto ;
Rathnam, Renu Kumar ;
Geissler, Tobias ;
Heinzel, Annette ;
Mehravaran, Kian ;
Mueller, George ;
Plevan, Michael ;
Rubbia, Carlo ;
Salmieri, Delia ;
Stoppel, Leonid ;
Stueckrad, Stefan ;
Weisenburger, Alfons ;
Wenninger, Horst ;
Wetzel, Thomas .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (19) :8159-8167
[2]   Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor [J].
Abanades, Stephane ;
Flamant, Gilles .
SOLAR ENERGY, 2006, 80 (10) :1321-1332
[3]   Hydrogen production by methane decomposition: A review [J].
Abbas, Hazzim F. ;
Daud, W. M. A. Wan .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (03) :1160-1190
[4]   Solar gasification of biomass: A molten salt pyrolysis study [J].
Adinberg, R ;
Epstein, M ;
Karni, J .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (03) :850-857
[5]   Review of methane catalytic cracking for hydrogen production [J].
Amin, Ashraf M. ;
Croiset, Eric ;
Epling, William .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (04) :2904-2935
[6]   Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review [J].
Ashik, U. P. M. ;
Daud, W. M. A. Wan ;
Abbas, Hazzim F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 44 :221-256
[7]   Effect of nanoparticles concentration and their sizes on surface tension of nanofluids [J].
Bhuiyan, M. H. U. ;
Saidur, R. ;
Amalina, M. A. ;
Mostafizur, R. M. ;
Islam, A. K. M. S. .
6TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, 2015, 105 :431-437
[8]   THERMAL-DECOMPOSITION OF PURE METHANE AT 1263-K - EXPERIMENTS AND MECHANISTIC MODELING [J].
BILLAUD, F ;
GUERET, C ;
WEILL, J .
THERMOCHIMICA ACTA, 1992, 211 :303-322
[9]   THE CONSTITUTION OF IONIC LIQUIDS .3. THE SURFACE TENSIONS OF MOLTEN SALTS AND THEIR MIXTURES [J].
BOARDMAN, NK ;
PALMER, AR ;
HEYMANN, E .
TRANSACTIONS OF THE FARADAY SOCIETY, 1955, 51 (02) :277-286
[10]   THE EQUILIBRIUM REACTION NICL2 + H2 NI + 2HCL - FERROMAGNETISM AND THE 3RD LAW OF THERMODYNAMICS [J].
BUSEY, RH ;
GIAUQUE, WF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1953, 75 (08) :1791-1794