Hochschild and cyclic homology of Yang-Mills algebras

被引:6
作者
Herscovich, Estanislao [1 ]
Solotar, Andrea [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2012年 / 665卷
关键词
HOMOGENEOUS ALGEBRAS;
D O I
10.1515/CRELLE.2011.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n is an element of N >= 2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal t eta m(n) in eta m(n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
引用
收藏
页码:73 / 156
页数:84
相关论文
共 35 条
[11]  
Dixmier J., 1996, Grad. Stud. Math., V11
[12]  
FULTON W, 1991, GRAD TEXTS MATH, V0129
[13]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[14]   CYCLIC HOMOLOGY, DERIVATIONS, AND THE FREE LOOPSPACE [J].
GOODWILLIE, TG .
TOPOLOGY, 1985, 24 (02) :187-215
[15]   Representations of Yang-Mills algebras [J].
Herscovich, Estanislao ;
Solotar, Andrea .
ANNALS OF MATHEMATICS, 2011, 173 (02) :1043-1080
[16]  
Humphreys J.E., 1975, GRAD TEXTS MATH, V21
[17]  
Huybrechts D., 2005, Complex geometry, An introduction Universitext,
[18]   CYCLIC HOMOLOGY AND THE DETERMINANT OF THE CARTAN MATRIX [J].
IGUSA, K .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 83 (02) :101-119
[19]   CYCLIC HOMOLOGY, COMODULES, AND MIXED COMPLEXES [J].
KASSEL, C .
JOURNAL OF ALGEBRA, 1987, 107 (01) :195-216
[20]  
Kontsevich M, 2000, GELF MATH SEMINAR, P85