Hochschild and cyclic homology of Yang-Mills algebras

被引:6
作者
Herscovich, Estanislao [1 ]
Solotar, Andrea [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2012年 / 665卷
关键词
HOMOGENEOUS ALGEBRAS;
D O I
10.1515/CRELLE.2011.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to present a detailed algebraic computation of the Hochschild and cyclic homology groups of the Yang-Mills algebras YM(n) (n is an element of N >= 2) defined by A. Connes and M. Dubois-Violette in [8], continuing thus the study of these algebras that we have initiated in [17]. The computation involves the use of a spectral sequence associated to the natural filtration on the universal enveloping algebra YM(n) provided by a Lie ideal t eta m(n) in eta m(n) which is free as Lie algebra. As a corollary, we describe the Lie structure of the first Hochschild cohomology group.
引用
收藏
页码:73 / 156
页数:84
相关论文
共 35 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]  
[Anonymous], 1994, CAMBRIDGE STUD ADV M
[3]   Homogeneous algebras [J].
Berger, R ;
Dubois-Violette, M ;
Wambst, M .
JOURNAL OF ALGEBRA, 2003, 261 (01) :172-185
[4]   Koszulity for nonquadratic algebras [J].
Berger, R .
JOURNAL OF ALGEBRA, 2001, 239 (02) :705-734
[5]  
BERGER R, CATEGORIE MODULES GR
[6]  
Berger R, 2007, J NONCOMMUT GEOM, V1, P241
[7]   Koszul and Gorenstein properties for homogeneous algebras [J].
Berger, Roland ;
Marconnet, Nicolas .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (01) :67-97
[8]  
Cartan H, 1956, Princeton Mathematics Series, V19
[9]   Yang-Mills algebra [J].
Connes, A ;
Dubois-Violette, M .
LETTERS IN MATHEMATICAL PHYSICS, 2002, 61 (02) :149-158
[10]  
Connes A, 2007, PROG MATH, V251, P65