First-Principles Investigation of Antimonene Nanoribbons for Sensing Toxic NO2 Gas

被引:3
|
作者
Srivastava, Pankaj [1 ]
Abhishek [1 ]
Sharma, Varun [2 ]
Jaiswal, Neeraj K. [3 ]
机构
[1] ABV Indian Inst Informat Technol & Management III, Nanomat Res Grp, Gwalior 474015, India
[2] BITS Pilani, EEE Dept, KK Birla Goa Campus, Pilani 403726, Goa, India
[3] Indian Inst Informat Technol Design & Mfg, Discipline Phys, 2D Mat Res Lab, Jabalpur 482005, India
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2020年 / 257卷 / 09期
关键词
antimonene nanoribbons; DFT calculations; electronic structure; gas sensors; nitrogen dioxide; selectivity; BORON-NITRIDE NANORIBBONS; AIR-POLLUTION; NITROGEN-DIOXIDE; ADSORPTION; SENSOR; SILICENE; MOLECULE; GRAPHENE; HEALTH; ENERGY;
D O I
10.1002/pssb.202000034
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Herein, based on density functional theory (DFT) calculations, the antimonene nanoribbons (SbNRs) are systematically investigated to gauge their potential for plausible NO2 sensors. The outcomes suggest that the adsorbed NO2 molecule forms a strong chemical bond with zigzag SbNR (ZSbNR) and armchair SbNR (ASbNR). Also, it is unveiled that each configuration of NO2 adsorption on SbNR is energetically favorable, with O2N-ZSbNR-H and O2N-H-ASbNR-H-O2N considered as most stable adsorption configuration. NO2 molecule acts as a strong charge acceptor and exhibits reasonable adsorption energy. The electronic structure calculations reflect the transformation of narrow to wide bandgap semiconductors upon adsorption. The obtained transport properties feature the profound change in current magnitude in both ZSbNR and ASbNR after NO2 adsorption. Present findings indicate that ZSbNR and ASbNR are highly selective to detect the presence of NO2 molecules against atmospheric gases.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] First-principles investigation on structural and electronic properties of antimonene nanoribbons and nanotubes
    Nagarajan, V.
    Chandiramouli, R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 97 : 98 - 104
  • [2] First-principles investigation on defect-induced silicene nanoribbons - A superior media for sensing NH3, NO2 and NO gas molecules
    Walia, Gurleen Kaur
    Randhawa, Deep Kamal Kaur
    SURFACE SCIENCE, 2018, 670 : 33 - 43
  • [3] First -principles investigation of CO 2 and NH 3 adsorption on antimonene nanoribbons
    Srivastava, Pankaj
    Abhishek
    Jaiswal, Neeraj K.
    MATERIALS TODAY-PROCEEDINGS, 2020, 28 : 65 - 69
  • [4] Tailoring gas sensing properties of armchair graphene nanoribbons via transition metal doping: a first-principles investigation on NO, NO2, and NH3 molecules
    Jyoti, R.
    Kaur, Navjot
    Choudhary, B. C.
    Prior, Timothy J.
    Sharma, Ramesh K.
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [5] First-principles investigation of armchair boron nitride nanoribbons for sensing PH3 gas molecules
    Srivastava, Pankaj
    Jaiswal, Neeraj K.
    Sharma, Varun
    SUPERLATTICES AND MICROSTRUCTURES, 2014, 73 : 350 - 358
  • [6] First-principles investigation of armchair stanene nanoribbons
    Fadaie, M.
    Shahtahmassebi, N.
    Roknabad, M. R.
    Gulseren, O.
    PHYSICS LETTERS A, 2018, 382 (04) : 180 - 185
  • [7] The Unusual Tribological Properties of Graphene/Antimonene Heterojunctions: A First-Principles Investigation
    Jiang, Xian
    Lu, Zhibin
    Zhang, Renhui
    MATERIALS, 2021, 14 (05) : 1 - 11
  • [8] NO2 adsorption behaviour on germanene nanosheet - A first-principles investigation
    Nagarajan, V.
    Chandiramouli, R.
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 160 - 171
  • [9] Superior gas sensing properties of β-In2Se3: A first-principles investigation
    Bolarinwa, Sherifdeen O.
    Sattar, Shahid
    AlShaikhi, Abdullah A.
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 201
  • [10] A Theoretical Study of Armchair Antimonene Nanoribbons in the Presence of Uniaxial Strain Based on First-Principles Calculations
    Goharrizi, Arash Yazdanpanah
    Barzoki, Ali Molajani
    Selberherr, Siegfried
    Filipovic, Lado
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (08) : 4514 - 4522