A convexity theorem for multiplicative functions

被引:1
|
作者
Marechal, Pierre [1 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse, France
关键词
Multiplicative potential function; Generalized perspective; Convexity;
D O I
10.1007/s11590-011-0277-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We generalize a well known convexity property of the multiplicative potential function. We prove that, given any convex function g : R-m -> [0, infinity], the function (x, y) bar right arrow g(x)(1+alpha) y(-beta), y > 0, is convex if beta >= 0 and alpha >= beta(1) + ... + beta(n). We also provide further generalization to functions of the form (x, y(1), ..., y(n)) bar right arrow g(x)(1+alpha) f(1)(y(1))(-beta 1) center dot center dot center dot f(1)(y(1))(-beta n) with the f(k) concave, positively homogeneous and nonnegative on their domains.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 50 条