Electronic properties of hydrogenated quasi-free-standing graphene

被引:19
|
作者
Haberer, D. [1 ]
Petaccia, L. [2 ]
Wang, Y. [3 ]
Quian, H. [3 ]
Farjam, M. [4 ]
Jafari, S. A. [4 ,5 ]
Sachdev, H. [6 ,7 ]
Federov, A. V. [8 ]
Usachov, D. [8 ]
Vyalikh, D. V. [8 ,9 ]
Liu, X. [10 ]
Vilkov, O. [8 ,9 ]
Adamchuk, V. K. [8 ]
Irle, S. [3 ]
Knupfer, M. [1 ]
Buechner, B. [1 ]
Grueneis, A. [1 ,10 ]
机构
[1] IFW Dresden, D-01171 Dresden, Germany
[2] Sincrotrone Trieste SCpA, Elettra Synchrotron Light Lab, I-34149 Trieste, Italy
[3] Nagoya Univ, Dept Chem, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[4] Inst Res Fundamental Sci IPM, Tehran, Iran
[5] Sharif Univ Technol, Dept Phys, Tehran 111559161, Iran
[6] Univ Saarland, D-66041 Saarbrucken, Germany
[7] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[8] St Petersburg State Univ, St Petersburg 198504, Russia
[9] Tech Univ Dresden, Inst Festkorperphys, D-01069 Dresden, Germany
[10] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
来源
基金
日本科学技术振兴机构;
关键词
functionalization; graphene; hydrogen; photoemission spectroscopy; MONOLAYER; NI(111); CARBON;
D O I
10.1002/pssb.201100521
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Tailoring the electronic properties of graphene is of fundamental interest regarding its application in electronic devices. One of the key strategies is chemical functionalization which modifies the pi-electron system and thus can induce band gaps. However, in order to control the degree of functionalization it is crucial to know the exact amount of the chemisorbed species. We show with angle-resolved photoemission spectroscopy (ARPES) the formation of a band gap in graphene and estimate the hydrogen coverage from the scattering rate. Using X-ray photoemission spectroscopy (XPS) we identify the chemical environments in hydrogenated graphene and determine the total hydrogen to carbon (H/C)-ratio directly from the spectra. We then compare ARPES and XPS as tools for determining the H/C-ratio and discuss the results from molecular dynamics (MD) simulations. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2639 / 2643
页数:5
相关论文
共 50 条
  • [31] Pinning and Anharmonic Phonon Effect of Quasi-Free-Standing Bilayer Epitaxial Graphene on SiC
    Sun, Li
    Wang, Peng
    Xie, Xuejian
    Chen, Xiufang
    Yu, Fapeng
    Li, Yanlu
    Xu, Xiangang
    Zhao, Xian
    NANOMATERIALS, 2022, 12 (03)
  • [32] Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001)
    Bocquet, F. C.
    Bisson, R.
    Themlin, J. -M.
    Layet, J. -M.
    Angot, T.
    PHYSICAL REVIEW B, 2012, 85 (20):
  • [33] Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC
    Pakdehi, D. Momeni
    Pierz, K.
    Wundrack, S.
    Aprojanz, J.
    Nguyen, T. T. N.
    Dziomba, T.
    Hohls, F.
    Bakin, A.
    Stosch, R.
    Tegenkamp, C.
    Ahlers, F. J.
    Schumacher, H. W.
    ACS APPLIED NANO MATERIALS, 2019, 2 (02) : 844 - 852
  • [34] Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation
    Park, Young S.
    Park, Jae H.
    Hwang, Han N.
    Laishram, Tomba Singh
    Kim, Kwang S.
    Kang, Myung H.
    Hwang, Chan C.
    PHYSICAL REVIEW X, 2014, 4 (03):
  • [35] Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source
    Wong, Swee Liang
    Huang, Han
    Wang, Yuzhan
    Cao, Liang
    Qi, Dongchen
    Santoso, Iman
    Chen, Wei
    Wee, Andrew Thye Shen
    ACS NANO, 2011, 5 (09) : 7662 - 7668
  • [36] Structure of quasi-free-standing graphene on the SiC (0001) surface prepared by the rapid cooling method
    Sumi, Tatsuya
    Nagai, Kazuki
    Bao, Jianfeng
    Terasawa, Tomo-o
    Norimatsu, Wataru
    Kusunoki, Michiko
    Wakabayashi, Yusuke
    APPLIED PHYSICS LETTERS, 2020, 117 (14)
  • [37] The Role of the Charge State of Surface Atoms of a Metal Substrate in Doping of Quasi-Free-Standing Graphene
    S. Yu. Davydov
    A. A. Lebedev
    Yu. V. Lubimova
    Technical Physics Letters, 2018, 44 : 1089 - 1091
  • [38] The Role of the Charge State of Surface Atoms of a Metal Substrate in Doping of Quasi-Free-Standing Graphene
    Davydov, S. Yu.
    Lebedev, A. A.
    Lubimova, Yu. V.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (12) : 1089 - 1091
  • [39] Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect
    Armakavicius, Nerijus
    Kuhne, Philipp
    Eriksson, Jens
    Bouhafs, Chamseddine
    Stanishev, Vallery
    Ivanov, Ivan G.
    Yakimova, Rositsa
    Zakharov, Alexei A.
    Al-Temimy, Ameer
    Coletti, Camilla
    Schubert, Mathias
    Darakchiev, Vanya
    CARBON, 2021, 172 : 248 - 259
  • [40] Manipulation of plasmon electron-hole coupling in quasi-free-standing epitaxial graphene layers
    Langer, Thomas
    Pfnuer, Herbert
    Tegenkamp, Christoph
    Forti, Stiven
    Emtsev, Konstantin
    Starke, Ulrich
    NEW JOURNAL OF PHYSICS, 2012, 14