SOLID-STATE NMR;
AUTOMATED NOE ASSIGNMENT;
ESCHERICHIA-COLI K-12;
MONOMERIC PORIN OMPG;
ANGLE-SPINNING NMR;
RESONANCE ASSIGNMENT;
RECOMBINANT PROTEINS;
TORSION ANGLES;
C-13;
SPECTROSCOPY;
D O I:
10.1038/s41467-017-02228-2
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
beta-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue H-1-H-1 and C-13-C-13 distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of beta-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix.