Marked Length Spectrum Rigidity in Non-Positive Curvature with Singularities

被引:3
作者
Constantine, David [1 ]
机构
[1] Wesleyan Univ, Math & Comp Sci Dept, Middletown, CT 06459 USA
关键词
SURFACES; MANIFOLDS;
D O I
10.1512/iumj.2018.67.7545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By combining several previously known arguments, we prove marked length spectrum rigidity for surfaces with non-positively curved Riemannian metrics away from a finite set of cone-type singularities with cone angles greater than 2 pi. With an additional condition, we can weaken the requirement on one metric to "no conjugate points."
引用
收藏
页码:2337 / 2361
页数:25
相关论文
共 21 条
[1]   MARKED-LENGTH-SPECTRAL RIGIDITY FOR FLAT METRICS [J].
Bankovic, Anja ;
Leininger, Christopher J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :1867-1884
[2]   THE GEOMETRY OF TEICHMULLER SPACE VIA GEODESIC CURRENTS [J].
BONAHON, F .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :139-162
[3]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[4]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[5]  
Burns K., 1985, Ergodic Theory and Dynamical Systems, V5, P307, DOI 10.1017/S0143385700002935
[6]  
CAO JIANGUO, 2008, CLOSING LEMMA FLAT S
[7]  
CONSTANTINE DAVID, 2012, PREPRINT
[8]  
Coudne Y., 2014, J. c. polytech. Math, V1, P387, DOI [10.5802/jep.14, DOI 10.5802/JEP.14]
[9]   THE MARKED LENGTH-SPECTRUM OF A SURFACE OF NONPOSITIVE CURVATURE [J].
CROKE, C ;
FATHI, A ;
FELDMAN, J .
TOPOLOGY, 1992, 31 (04) :847-855
[10]   RIGIDITY FOR SURFACES OF NONPOSITIVE CURVATURE [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :150-169