A Structural Battery and its Multifunctional Performance

被引:168
作者
Asp, Leif E. [1 ]
Bouton, Karl [2 ]
Carlstedt, David [1 ]
Duan, Shanghong [1 ]
Harnden, Ross [2 ]
Johannisson, Wilhelm [2 ]
Johansen, Marcus [1 ]
Johansson, Mats K. G. [3 ]
Lindbergh, Goran [4 ]
Liu, Fang [1 ]
Peuvot, Kevin [4 ]
Schneider, Lynn M. [3 ]
Xu, Johanna [1 ]
Zenkert, Dan [2 ]
机构
[1] Chalmers Univ Technol, Dept Ind & Mat Sci, SE-41296 Gothenburg, Sweden
[2] KTH Royal Inst Technol, Dept Engn Mech, SE-10044 Stockholm, Sweden
[3] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Dept Chem Engn, SE-10044 Stockholm, Sweden
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2021年 / 2卷 / 03期
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
biomimetics; carbon fiber composites; fibrous materials; lithium-ion batteries; multifunctional materials; self-sustaining materials; solid states; DESIGN;
D O I
10.1002/aesr.202000093
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Engineering materials that can store electrical energy in structural load paths can revolutionize lightweight design across transport modes. Stiff and strong batteries that use solid-state electrolytes and resilient electrodes and separators are generally lacking. Herein, a structural battery composite with unprecedented multifunctional performance is demonstrated, featuring an energy density of 24Whkg(-1) and an elastic modulus of 25GPa and tensile strength exceeding 300MPa. The structural battery is made from multifunctional constituents, where reinforcing carbon fibers (CFs) act as electrode and current collector. A structural electrolyte is used for load transfer and ion transport and a glass fiber fabric separates the CF electrode from an aluminum foil-supported lithium-iron-phosphate positive electrode. Equipped with these materials, lighter electrical cars, aircraft, and consumer goods can be pursued.
引用
收藏
页数:9
相关论文
共 30 条
[11]   Structural batteries made from fibre reinforced composites [J].
Ekstedt, S. ;
Wysocki, M. ;
Asp, L. E. .
PLASTICS RUBBER AND COMPOSITES, 2010, 39 (3-5) :148-150
[12]   Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes [J].
Fredi, Giulia ;
Jeschke, Steffen ;
Boulaoued, Athmane ;
Wallenstein, Joachim ;
Rashidi, Masoud ;
Liu, Fang ;
Harnden, Ross ;
Zenkert, Dan ;
Hagberg, Johan ;
Lindbergh, Goran ;
Johansson, Patrik ;
Stievano, Lorenzo ;
Asp, Leif E. .
Multifunctional Materials, 2018, 1 (01)
[13]   High-Performance Structural Batteries [J].
Hopkins, Brandon J. ;
Long, Jeffrey W. ;
Rolison, Debra R. ;
Parker, Joseph F. .
JOULE, 2020, 4 (11) :2240-2243
[14]   Structural lithium ion battery electrolytes via reaction induced phase-separation [J].
Ihrner, N. ;
Johannisson, W. ;
Sieland, F. ;
Zenkert, D. ;
Johansson, M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (48) :25652-25659
[15]   A residual performance methodology to evaluate multifunctional systems [J].
Johannisson W. ;
Nguyen S. ;
Lindbergh G. ;
Zenkert D. ;
Greenhalgh E.S. ;
Shaffer M.S.P. ;
Kucernak A.R.J. .
Multifunctional Materials, 2020, 3 (02)
[16]   Model of a structural battery and its potential for system level mass savings [J].
Johannisson W. ;
Zenkert D. ;
Lindbergh G. .
Multifunctional Materials, 2019, 2 (03)
[17]  
Johannisson W., 2020, PNAS
[18]   Multifunctional performance of a carbon fiber UD lamina electrode for structural batteries [J].
Johannisson, Wilhelm ;
Ihrner, Niklas ;
Zenkert, Dan ;
Johansson, Mats ;
Carlstedt, David ;
Asp, Leif E. ;
Sieland, Fabian .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 168 :81-87
[19]   PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries [J].
Kjell, Maria H. ;
Jacques, Eric ;
Zenkert, Dan ;
Behm, Marten ;
Lindbergh, Goran .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (12) :A1455-A1460
[20]   Design and fabrication of multifunctional structural batteries [J].
Liu, Ping ;
Sherman, Elena ;
Jacobsen, Alan .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :646-650