A Structural Battery and its Multifunctional Performance

被引:168
作者
Asp, Leif E. [1 ]
Bouton, Karl [2 ]
Carlstedt, David [1 ]
Duan, Shanghong [1 ]
Harnden, Ross [2 ]
Johannisson, Wilhelm [2 ]
Johansen, Marcus [1 ]
Johansson, Mats K. G. [3 ]
Lindbergh, Goran [4 ]
Liu, Fang [1 ]
Peuvot, Kevin [4 ]
Schneider, Lynn M. [3 ]
Xu, Johanna [1 ]
Zenkert, Dan [2 ]
机构
[1] Chalmers Univ Technol, Dept Ind & Mat Sci, SE-41296 Gothenburg, Sweden
[2] KTH Royal Inst Technol, Dept Engn Mech, SE-10044 Stockholm, Sweden
[3] KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Dept Chem Engn, SE-10044 Stockholm, Sweden
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2021年 / 2卷 / 03期
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
biomimetics; carbon fiber composites; fibrous materials; lithium-ion batteries; multifunctional materials; self-sustaining materials; solid states; DESIGN;
D O I
10.1002/aesr.202000093
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Engineering materials that can store electrical energy in structural load paths can revolutionize lightweight design across transport modes. Stiff and strong batteries that use solid-state electrolytes and resilient electrodes and separators are generally lacking. Herein, a structural battery composite with unprecedented multifunctional performance is demonstrated, featuring an energy density of 24Whkg(-1) and an elastic modulus of 25GPa and tensile strength exceeding 300MPa. The structural battery is made from multifunctional constituents, where reinforcing carbon fibers (CFs) act as electrode and current collector. A structural electrolyte is used for load transfer and ion transport and a glass fiber fabric separates the CF electrode from an aluminum foil-supported lithium-iron-phosphate positive electrode. Equipped with these materials, lighter electrical cars, aircraft, and consumer goods can be pursued.
引用
收藏
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 2018, TESLA MODEL S OWNERS
[2]  
[Anonymous], 2013, THESIS
[3]  
[Anonymous], 2007, P SAMPE
[4]  
[Anonymous], 2011, Flightpath 2050 Europe's vision of aviation: maintaining global leadership and serving society's needs, DOI DOI 10.2777/50266
[5]   Structural battery composites: a review [J].
Asp, Leif E. ;
Johansson, Mats ;
Lindbergh, Goeran ;
Xu, Johanna ;
Zenkert, Dan .
FUNCTIONAL COMPOSITES AND STRUCTURES, 2019, 1 (04)
[6]   Structural power composites [J].
Asp, Leif E. ;
Greenhalgh, Emile S. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 101 :41-61
[7]   Performance analysis framework for structural battery composites in electric vehicles [J].
Carlstedt, David ;
Asp, Leif E. .
COMPOSITES PART B-ENGINEERING, 2020, 186
[8]   Promising Trade-Offs Between Energy Storage and Load Bearing in Carbon Nanofibers as Structural Energy Storage Devices [J].
Chen, Yjun ;
Amiri, Ahmad ;
Boyd, James C. ;
Naraghi, Mohammad .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (33)
[9]   Energy Consumption Prediction for Electric Vehicles Based on Real-World Data [J].
De Cauwer, Cedric ;
Van Mierlo, Joeri ;
Coosemans, Thierry .
ENERGIES, 2015, 8 (08) :8573-8593
[10]  
EARPA, 2006, EARPA POSITION PAPER