Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase

被引:53
作者
Caldararu, Octav [1 ]
Oksanen, Esko [2 ,3 ]
Ryde, Ulf [1 ]
Hedegard, Erik D. [1 ]
机构
[1] Lund Univ, Chem Ctr, Div Theoret Chem, POB 124, SE-22100 Lund, Sweden
[2] ERIC, ESS, POB 176, SE-22100 Lund, Sweden
[3] Lund Univ, Chem Ctr, Dept Biochem & Struct Biol, POB 124, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
X-RAY; FUNCTIONAL-CHARACTERIZATION; CELLULOSE DEGRADATION; OXIDATIVE CLEAVAGE; BASIS-SETS; DISCOVERY; NEUTRON; FAMILY; DEHYDROGENASE; COORDINATION;
D O I
10.1039/c8sc03980a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) are copper-containing metalloenzymes that can cleave the glycosidic link in polysaccharides. This could become crucial for production of energy-efficient biofuels from recalcitrant polysaccharides. Although LPMOs are considered oxygenases, recent investigations have shown that H2O2 can also act as a co-substrate for LPMOs. Intriguingly, LPMOs generate H2O2 in the absence of a polysaccharide substrate. Here, we elucidate a new mechanism for H2O2 generation starting from an AA10-LPMO crystal structure with an oxygen species bound, using QM/MM calculations. The reduction level and protonation state of this oxygen-bound intermediate has been unclear. However, this information is crucial to the mechanism. We therefore investigate the oxygen-bound intermediate with quantum refinement (crystallographic refinement enhanced with QM calculations), against both X-ray and neutron data. Quantum refinement calculations suggest a Cu(ii)-O-2 system in the active site of the AA10-LPMO and a neutral protonated -NH2 state for the terminal nitrogen atom, the latter in contrast to the original interpretation. Our QM/MM calculations show that H2O2 generation is possible only from a Cu(i) center and that the most favourable reaction pathway is to involve a nearby glutamate residue, adding two electrons and two protons to the Cu(ii)-O-2 system, followed by dissociation of H2O2.
引用
收藏
页码:576 / 586
页数:11
相关论文
共 58 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules [J].
Adams, Paul D. ;
Mustyakimov, Marat ;
Afonine, Pavel V. ;
Langan, Paul .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2009, 65 :567-573
[3]   Joint X-ray and neutron refinement with phenix.refine [J].
Afonine, Pavel V. ;
Mustyakimov, Marat ;
Grosse-Kunstleve, Ralf W. ;
Moriarty, Nigel W. ;
Langan, Paul ;
Adams, Paul D. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :1153-1163
[4]   Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation [J].
Agger, Jane W. ;
Isaksen, Trine ;
Varnai, Aniko ;
Vidal-Melgosa, Silvia ;
Willats, William G. T. ;
Ludwig, Roland ;
Horn, Svein J. ;
Eijsink, Vincent G. H. ;
Westereng, Bjorge .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) :6287-6292
[5]   ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE [J].
AHLRICHS, R ;
BAR, M ;
HASER, M ;
HORN, H ;
KOLMEL, C .
CHEMICAL PHYSICS LETTERS, 1989, 162 (03) :165-169
[6]   Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation [J].
Bacik, John-Paul ;
Mekasha, Sophanit ;
Forsberg, Zarah ;
Kovalevsky, Andrey Y. ;
Vaaje-Kolstad, Gustav ;
Eijsink, Vincent G. H. ;
Nix, Jay C. ;
Coates, Leighton ;
Cuneo, Matthew J. ;
Unkefer, Clifford J. ;
Chen, Julian C. -H. .
BIOCHEMISTRY, 2017, 56 (20) :2529-2532
[7]   Cellulose Degradation by Polysaccharide Monooxygenases [J].
Beeson, William T. ;
Vu, Van V. ;
Span, Elise A. ;
Phillips, Christopher M. ;
Marletta, Michael A. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 84, 2015, 84 :923-946
[8]   Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina [J].
Bennati-Granier, Chloe ;
Garajova, Sona ;
Champion, Charlotte ;
Grisel, Sacha ;
Haon, Mireille ;
Zhou, Simeng ;
Fanuel, Mathieu ;
Ropartz, David ;
Rogniaux, Helene ;
Gimbert, Isabelle ;
Record, Eric ;
Berrin, Jean-Guy .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[9]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[10]   Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations [J].
Bertini, Luca ;
Breglia, Raffaella ;
Lambrughi, Matteo ;
Fantucci, Piercarlo ;
De Gioia, Luca ;
Borsari, Marco ;
Sola, Marco ;
Bortolotti, Carlo Augusto ;
Bruschi, Maurizio .
INORGANIC CHEMISTRY, 2018, 57 (01) :86-97