Minimum message length autoregressive model order selection

被引:0
作者
Fitzgibbon, LJ [1 ]
Dowe, DL [1 ]
Vahid, F [1 ]
机构
[1] Monash Univ, Sch Comp Sci & Software Engn, Clayton, Vic 3800, Australia
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON INTELLIGENT SENSING AND INFORMATION PROCESSING | 2004年
关键词
minimum message length; MML; Bayesian; information; time series; autoregression; AR; order selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive a Minimum Message Length (MML) estimator for stationary and nonstationary autoregressive models using the Wallace and Freeman (1987) approximation. The MML estimator's model selection performance is empirically compared with AIC, AIC(C), BIC and HQ in a Monte Carlo experiment by uniformly sampling from the autoregressive stationarity region. Generally applicable, uniform priors are used on the coefficients, model order and log sigma(2) for the MML estimator. The experimental results show the MML estimator to have the best overall average mean squared prediction error and best ability to choose the true model order.
引用
收藏
页码:439 / 444
页数:6
相关论文
共 22 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Barndorff-Nielsen O. E., 1973, Journal of Multivariate Analysis, V3, P408, DOI DOI 10.1016/0047-259X(73)90030-4
[3]  
Box G.E. P., 1994, Time Series Analysis: Forecasting Control, V3rd
[4]  
BROERSEN PMT, 2000, IEEE BEN SIGN PROC S, P1
[5]  
CONWAY JH, 1999, PACKINGS LATTICES GR
[6]   MML Markov classification of sequential data [J].
Edgoose, T ;
Allison, L .
STATISTICS AND COMPUTING, 1999, 9 (04) :269-278
[7]  
Fitzgibbon LJ, 2000, LECT NOTES ARTIF INT, V1968, P56
[8]  
Hamilton J. D., 1994, TIME SERIES ANAL
[9]  
HANNAN EJ, 1979, J ROY STAT SOC B MET, V41, P190
[10]  
HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663