A generalization of Descartes' rule of signs and fundamental theorem of algebra

被引:18
作者
Haukkanen, Pentti [1 ]
Tossavainen, Timo [2 ]
机构
[1] Univ Tampere, Sch Informat Sci, FI-33014 Tampere, Finland
[2] Univ Eastern Finland, Sch Appl Educ Sci & Teacher Educ, FI-57101 Savonlinna, Finland
关键词
Descartes' rule of signs; Fundamental theorem of algebra; Number of zeroes; Real function family; Polynomial; Sum of exponential functions; PROOF;
D O I
10.1016/j.amc.2011.05.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Descartes' rule of signs yields an upper bound for the number of positive and negative real roots of a given polynomial. The fundamental theorem of algebra implies a similar property; every real polynomial of degree n >= 1 has at most n real zeroes. In this paper, we describe axiomatically function families possessing one or another of these properties. The resulting families include, at least, all polynomial functions and sums of exponential functions. As an application of our approach, we consider, among other things, a method for identifying certain type of bases for the Euclidean space. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1203 / 1207
页数:5
相关论文
共 21 条
[1]  
Albert G.E., 1943, Amer. Math. Monthly, V50, P178
[2]   Descartes' rule of signs revisited [J].
Anderson, B ;
Jackson, J ;
Sitharam, M .
AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05) :447-451
[3]  
Drucker D. S., 1979, MATH MAG, V52, P237
[4]  
Drury S.W., 2003, ELECTRON J LINEAR AL, V10, P280
[5]   On multiple roots in Descartes' Rule and their distance to roots of higher derivatives [J].
Eigenwillig, Arno .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (01) :226-230
[6]   Descartes' Rule of Signs, Alternations of Data Sets, and Balanced Differences [J].
Fejzic, H. ;
Freiling, C. ;
Rinne, D. .
AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (04) :316-327
[7]  
Fine B., 1997, The Fundamental Theorem of Algebra. Undergraduate Texts in Mathematics
[8]   Descartes' rule of signs: Another construction [J].
Grabiner, DJ .
AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (09) :854-856
[9]   Another short proof of Descartes's rule of signs [J].
Komornik, Vilmos .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (09) :829-830
[10]  
Körner TW, 2006, AM MATH MON, V113, P347