Determining nonsmooth first order terms from partial boundary measurements

被引:0
作者
Knudsen, Kim [1 ]
Salo, Mikko [2 ]
机构
[1] Aalborg Univ, Dept Math Sci, Aalborg, Denmark
[2] Univ Helsinki, Dept Math & Stat, RNI, FIN-00014 Helsinki, Finland
关键词
inverse problem for magnetic Schrodinger operator with nonsmooth coefficients; Carleman estimate; semiclassical pseudodifferential calculus;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend results of Dos Santos Ferreira-Kenig-Sjostrand-Uhlmann (Comm. Math. Phys., 2007) to less smooth coefficients, and we show that measurements on part of the boundary for the magnetic Schrodinger operator determine uniquely the magnetic field related to a Holder continuous potential. We give a similar result for determining a convection term. The proofs involve Carleman estimates, a smoothing procedure, and an extension of the Nakamura-Uhlmann pseudodifferential conjugation method to logarithmic Carleman weights.
引用
收藏
页码:349 / 369
页数:21
相关论文
共 22 条
[1]  
Brown R. M., 2006, Appl. Anal., V85, P735
[2]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668
[3]  
Cheng J., 2001, COMMUN KOREAN MATH S, V16, P405
[4]  
Dimassi M., 1999, LONDON MATH SOC LECT, V268
[5]   Determining a magnetic Schroedinger operator from partial Cauchy data [J].
Dos Santos Ferreira, David ;
Kenig, Carlos E. ;
Sjostrand, Johannes ;
Uhlmann, Gunther .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) :467-488
[6]   FOURIER INTEGRAL OPERATORS. II [J].
Duistermaat, J. J. ;
Hormander, L. .
ACTA MATHEMATICA, 1972, 128 (01) :183-269
[7]   INVERSE SCATTERING PROBLEM FOR THE SCHRODINGER-EQUATION WITH MAGNETIC POTENTIAL AT A FIXED-ENERGY [J].
ESKIN, G ;
RALSTON, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (01) :199-224
[8]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[9]   The Calderon problem with partial data [J].
Kenig, Carlos E. ;
Sjostrand, Johannes ;
Uhlmann, Gunther .
ANNALS OF MATHEMATICS, 2007, 165 (02) :567-591
[10]   The calderon problem with partial data for less smooth conductivities [J].
Knudsen, K .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (01) :57-71