Crystal structure and anti-site boundary defect characterisation of Cu2ZnSnSe4

被引:10
作者
Mendis, B. G. [1 ]
McKenna, K. P. [2 ]
Gurieva, G. [3 ]
Rumsey, M. S. [4 ]
Schorr, S. [3 ]
机构
[1] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England
[2] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[3] Helmholtz Zentrum Berlin Mat & Energie, Dept Struct & Dynam Energy Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[4] Nat Hist Museum, Dept Earth Sci, Mineral & Planetary Sci Div, Cromwell Rd, London SW7 5BD, England
基金
英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; SOLAR-CELLS; EFFICIENCY; FLUCTUATIONS; STANNITE;
D O I
10.1039/c7ta08263k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The crystal structure identification of the photovoltaic material Cu2ZnSnSe4 (CZTSe) is challenging due to the distinguishing feature between the two polymorphs, kesterite and stannite, being the arrangement of Cu and Zn ions. Here an energy dispersive X-ray (EDX) technique, based on electron beam channeling along specific crystallographic planes in a transmission electron microscope (TEM), is used to identify the structure. Regions a few 100 nm in size can be analysed using this method, unlike neutron or anomalous X-ray scattering. The parent crystal structure of CZTSe, annealed on either side of the order-disorder transition temperature, was correctly identified as being kesterite. The presence of 1/2[110] (001) and 1/4 [201] (101) anti-site boundaries (ASBs) has also been investigated. The density of ASBs is higher above the transition temperature, due to a smaller energy penalty for disordering on the 2c and 2d Wyckoff sites. A nearest neighbour cation analysis predicted the 1/2[110] (001) ASB to have the lowest formation energy. From density functional theory (DFT) simulations the 1/2[110] (001) ASB energy is only 43 mJ m(-2) and furthermore it is not a recombination site or current blocking layer, so that photovoltaic device performance is not significantly degraded.
引用
收藏
页码:189 / 197
页数:9
相关论文
共 33 条
[1]   Cation ratio fluctuations in Cu2ZnSnS4 at the 20 nm length scale investigated by analytical electron microscopy [J].
Aguiar, Jeffery A. ;
Erkan, Mehmet E. ;
Pruzan, Dennis S. ;
Nagaoka, Akira ;
Yoshino, Kenji ;
Moutinho, Helio ;
Al-Jassim, Mowafak ;
Scarpulla, Michael A. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (09) :2392-2399
[2]   A model for the mechanism of incorporation of Cu, Fe and Zn in the stannite -: Kesterite series, Cu2FeSnS4-Cu2ZnSnS4 [J].
Bonazzi, P ;
Bindi, L ;
Bernardini, GP ;
Menchetti, S .
CANADIAN MINERALOGIST, 2003, 41 :639-647
[3]   Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4 [J].
Bosson, C. J. ;
Birch, M. T. ;
Halliday, D. P. ;
Knight, K. S. ;
Gibbs, A. S. ;
Hatton, P. D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) :16672-16680
[4]   Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights [J].
Chen, Shiyou ;
Gong, X. G. ;
Walsh, Aron ;
Wei, Su-Huai .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[5]   A 5.5% efficient co-electrodeposited ZnO/CdS/Cu2ZnSnS4/Mo thin film solar cell [J].
Ge, Jie ;
Jiang, Jinchun ;
Yang, Pingxiong ;
Peng, Cheng ;
Huang, Zhipeng ;
Zuo, Shaohua ;
Yang, Lihong ;
Chu, Junhao .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 125 :20-26
[6]   Band tailing and efficiency limitation in kesterite solar cells [J].
Gokmen, Tayfun ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[7]  
Green MA, 2017, PROG PHOTOVOLTAICS, V25, P668, DOI [10.1002/pip.2909, 10.1002/pip.2978, 10.1002/pip.3040]
[8]   Luminescence of Cu2ZnSnS4 polycrystals described by the fluctuating potential model [J].
Halliday, D. P. ;
Claridge, R. ;
Goodman, M. C. J. ;
Mendis, B. G. ;
Durose, K. ;
Major, J. D. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (22)
[9]  
Heyd J, 2006, J CHEM PHYS, V124, DOI [10.1063/1.2204597, 10.1063/1.1564060]
[10]  
Hirsch P B., 1965, ELECT MICROSCOPY THI