Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode

被引:27
作者
Zhang, Yunbo [1 ,2 ]
Han, Zhiyuan [1 ,2 ]
Huang, Zhijia [1 ,2 ]
Zhang, Chen [1 ,2 ]
Luo, Chong [1 ,2 ]
Zhou, Guangmin [1 ,2 ]
Lv, Wei [1 ,2 ]
Yang, Quan-Hong [3 ]
机构
[1] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Tianjin Univ, Nanoyang Grp, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRODEPOSITION; DEFORMATION; PERFORMANCE; BATTERIES; STRESS; LIQUID; LAYER; SOFT;
D O I
10.1021/acsenergylett.1c01977
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dendrite growth hinders the practical uses of the lithium metal anode (LMA) toward a high-energy-density battery. From the mechanics perspective, the lithium growth on a solid substrate yields a large strength, leading to a short circuit and worsened nonuniform lithium deposition. Inspired by quicksand in nature, we designed a non-Newtonian shear-thinning LMA. Such a quicksand-like LMA shows flowability under pressure and removes the solid substrate for dendrite growth, effectively releasing the stress in electrodes, especially at large current density and high deposition capacity. As a result, a good cycling performance is realized in symmetric cells even under a high current density of 20 mA cm(-2) and a high deposition capacity of 8 mAh cm(-2). The assembled Li- LiFePO4 full cells also show a long stable cycling performance under a low N/P ratio. Moreover, the quicksand-like LMA eliminates the inner stress and keeps the integrity during repeated bending, showing potential use in flexible devices.
引用
收藏
页码:3761 / 3768
页数:8
相关论文
共 45 条
[1]   A soft, multilayered lithium-electrolyte interface [J].
Bucur, Claudiu B. ;
Lita, Adrian ;
Osada, Naoki ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :112-116
[2]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[3]   Recent progress in graphene-based electrodes for flexible batteries [J].
Dai, Chunlong ;
Sun, Guoqiang ;
Hu, Linyu ;
Xiao, Yukun ;
Zhang, Zhipan ;
Qu, Liangti .
INFOMAT, 2020, 2 (03) :509-526
[4]   Water-Stable Lithium Metal Anodes with Ultrahigh-Rate Capability Enabled by a Hydrophobic Graphene Architecture [J].
Dong, Lei ;
Nie, Lu ;
Liu, Wei .
ADVANCED MATERIALS, 2020, 32 (14)
[5]   Chemically anchored NiOx-carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity [J].
Gong, Yanli ;
Zhang, Ming ;
Cao, Guozhong .
RSC ADVANCES, 2015, 5 (34) :26521-26529
[6]   Simulation and Experiment on Solid Electrolyte Interphase (SEI) Morphology Evolution and Lithium-Ion Diffusion [J].
Guan, Pengjian ;
Liu, Lin ;
Lin, Xianke .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) :A1798-A1808
[7]   In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life [J].
Guo, Wei ;
Han, Qing ;
Jiao, Junrong ;
Wu, Wenhao ;
Zhu, Xuebing ;
Chen, Zhonghui ;
Zhao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :7267-7274
[8]   Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives [J].
Han, Yiyao ;
Liu, Bo ;
Xiao, Zhen ;
Zhang, Wenkui ;
Wang, Xiuli ;
Pan, Guoxiang ;
Xia, Yang ;
Xia, Xinhui ;
Tu, Jiangping .
INFOMAT, 2021, 3 (02) :155-174
[9]   Consecutive Nucleation and Confinement Modulation towards Li Plating in Seeded Capsules for Durable Li-Metal Batteries [J].
Huang, Minsong ;
Yao, Zhenguo ;
Yang, Qifan ;
Li, Chilin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (25) :14040-14050
[10]   Rejuvenating dead lithium supply in lithium metal anodes by iodine redox [J].
Jin, Chengbin ;
Liu, Tiefeng ;
Sheng, Ouwei ;
Li, Matthew ;
Liu, Tongchao ;
Yuan, Yifei ;
Nai, Jianwei ;
Ju, Zhijin ;
Zhang, Wenkui ;
Liu, Yujing ;
Wang, Yao ;
Lin, Zhan ;
Lu, Jun ;
Tao, Xinyong .
NATURE ENERGY, 2021, 6 (04) :378-387