The Euclidean distance degree of smooth complex projective varieties

被引:15
作者
Aluffi, Paolo [1 ]
Harris, Corey [2 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Max Planck Inst Math Sci, Leipzig, Germany
关键词
algebraic optimization; intersection theory; characteristic classes; Chern-Schwartz-MacPherson classes; CHERN CLASSES;
D O I
10.2140/ant.2018.12.2005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain several formulas for the Euclidean distance degree (ED degree) of an arbitrary nonsingular variety in projective space: in terms of Chern and Segre classes, Milnor classes, Chern-Schwartz-MacPherson classes, and an extremely simple formula equating the Euclidean distance degree of X with the Euler characteristic of an open subset of X.
引用
收藏
页码:2005 / 2032
页数:28
相关论文
共 29 条
[11]  
[Anonymous], 2006, London Math. Soc. Lecture Note Ser.
[12]   The Euclidean Distance Degree of an Algebraic Variety [J].
Draisma, Jan ;
Horobet, Emil ;
Ottaviani, Giorgio ;
Sturmfels, Bernd ;
Thomas, Rekha R. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) :99-149
[13]   The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors [J].
Friedland, Shmuel ;
Ottaviani, Giorgio .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2014, 14 (06) :1209-1242
[14]  
Fulton W., 1984, Ergeb. Math
[15]   Chern classes of automorphic vector bundles [J].
Goresky, M ;
Pardon, W .
INVENTIONES MATHEMATICAE, 2002, 147 (03) :561-612
[16]   Computing Segre classes in arbitrary projective varieties [J].
Harris, Corey .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 82 :26-37
[17]   Algorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson class and Segre class of projective varieties [J].
Helmer, Martin .
JOURNAL OF SYMBOLIC COMPUTATION, 2016, 73 :120-138
[18]  
Jost C., 2013, ALGORITHM COMPUTING
[19]  
Jost C., 2015, J. Softw. Algebra Geom, V7, P31, DOI DOI 10.2140/JSAG.2015.7.31
[20]   The Euclidean distance degree of Fermat hypersurfaces [J].
Lee, Hwangrae .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 80 :502-510