The Euclidean distance degree of smooth complex projective varieties

被引:15
作者
Aluffi, Paolo [1 ]
Harris, Corey [2 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Max Planck Inst Math Sci, Leipzig, Germany
关键词
algebraic optimization; intersection theory; characteristic classes; Chern-Schwartz-MacPherson classes; CHERN CLASSES;
D O I
10.2140/ant.2018.12.2005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain several formulas for the Euclidean distance degree (ED degree) of an arbitrary nonsingular variety in projective space: in terms of Chern and Segre classes, Milnor classes, Chern-Schwartz-MacPherson classes, and an extremely simple formula equating the Euclidean distance degree of X with the Euler characteristic of an open subset of X.
引用
收藏
页码:2005 / 2032
页数:28
相关论文
共 29 条
[2]  
Aluffi P, 2000, ADV STU P M, V29, P1
[3]   Differential forms with logarithmic poles and Chern-Schwartz-MacPherson classes of singular varieties [J].
Aluffi, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07) :619-624
[4]   Singular schemes of hypersurfaces [J].
Aluffi, P .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :325-351
[5]   Chern classes for singular hypersurfaces [J].
Aluffi, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (10) :3989-4026
[6]  
Aluffi P., 1994, International Mathematics Research Notices, V1994, P455
[7]   PROJECTIVE DUALITY AND A CHERN-MATHER INVOLUTION [J].
Aluffi, Paolo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :1803-1822
[8]   Tensored Segre classes [J].
Aluffi, Paolo .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (06) :1366-1382
[9]   Euler characteristics of general linear sections and polynomial Chern classes [J].
Aluffi P. .
Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) :3-26
[10]  
[Anonymous], MACAULAY2 SOFTWARE S