The Lp regularity problem for the Stokes system on Lipschitz domains

被引:11
作者
Geng, Jun [2 ]
Kilty, Joel [1 ]
机构
[1] Ctr Coll Danville, Dept Math, Danville, KY 40422 USA
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
Stokes system; Lipschitz domains; Regularity problem; BOUNDARY-VALUE-PROBLEMS; DIRICHLET PROBLEM; BIHARMONIC FUNCTIONS; ELLIPTIC-SYSTEMS; LAYER POTENTIALS; NEUMANN PROBLEM; EQUATION; EXISTENCE;
D O I
10.1016/j.jde.2015.02.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the L-p regularity problem for the stationary Stokes system on Lipschitz domains. For any p > 2 we show that a weak reverse Holder inequality with exponent p is both necessary and sufficient for the solvability of the regularity problem with data in W-1,W-P(partial derivative Omega) boolean AND L-n(p) (partial derivative Omega). We also obtain the W-1,W-P(Omega) estimate parallel to del u parallel to(LP) ((Omega)) + parallel to q parallel to(LP) ((Omega)) <= parallel to f parallel to(LP) ((Omega)) in a bounded Lipschitz domain Omega subset of R-d for solutions to the Dirichlet problem Delta u = del q + div(f), div(u) = 0 in Omega and u = 0 on partial derivative Omega, where vertical bar 1/p - 1/2 vertical bar < 1/2d + epsilon. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1275 / 1296
页数:22
相关论文
共 34 条
[1]   ON THE EXISTENCE AND REGULARITY OF THE SOLUTION OF STOKES PROBLEM IN ARBITRARY DIMENSION [J].
AMROUCHE, C ;
GIRAULT, V .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1991, 67 (05) :171-175
[2]  
[Anonymous], 2012, Asterisque Soc. Math. de France
[3]  
Bogovskii M.E., 1980, Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, V1, P149
[4]  
Brown RM, 1995, INDIANA U MATH J, V44, P1183
[5]  
Cattabriga L., 1961, REND SEMIN MAT U PAD, V31, P308
[6]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[7]   BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :795-818
[8]   Area integral estimates for higher order elliptic equations and systems [J].
Dahlberg, BEJ ;
Kenig, CE ;
Pipher, J ;
Verchota, GC .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) :1425-+
[9]   ON THE POISSON INTEGRAL FOR LIPSCHITZ AND C1-DOMAINS [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1979, 66 (01) :13-24
[10]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465