GRADED BETTI NUMBERS OF SOME FAMILIES OF CIRCULANT GRAPHS

被引:0
作者
Anand, Sonica [1 ]
Roy, Amit [2 ,3 ]
机构
[1] Mehr Chand Mahajan DAV Coll Women, Dept Math, Chandigarh 160036, India
[2] IISER Mohali, Mohali, Punjab, India
[3] Ctr Excellence Basic Sci, Mumbai 400098, Maharashtra, India
关键词
circulant graphs; edge ideals; Betti numbers; Castelnuovo-Mumford regularity; Cohen-Macaulay; Buchsbaum; well-covered; INDEPENDENCE; COMPLEXES;
D O I
10.1216/rmj.2021.51.1919
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the circulant graph C-n (S) with S subset of {1, 2, ..., left perpendicularn/2right perpendicular}, and let I (G) denote the edge ideal in the polynomial ring R = K[x(0), x(1), ..., x(n-1)] over a field K. In this paper we compute the N-graded Betti numbers of the edge ideals of three families of circulant graphs C-n (1, 2, ..., (j) over cap, ..., left perpendicularn/2right perpendicular), C-lm (1, 2, ..., (2l) over cap, ..., (3l) over cap, ..., left perpendicularlm/2 right perpendicular) and C-lm (1, 2, ..., (l) over cap , ..., (2l) over cap, ..., (3l) over cap, ..., left perpendicularlm/2right perpendicular). Other algebraic and combinatorial properties like regularity, projective dimension, induced matching number and when such graphs are well-covered, Cohen-Macaulay, sequentially Cohen-Macaulay, Buchsbaum and S-2 are also discussed.
引用
收藏
页码:1919 / 1940
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 2019, MATHEMATICS-BASEL, V7
[2]  
Bermond J., 1989, Ann. New York Acad. Sci., V555, P45
[3]   CIRCULANTS AND THEIR CONNECTIVITIES [J].
BOESCH, F ;
TINDELL, R .
JOURNAL OF GRAPH THEORY, 1984, 8 (04) :487-499
[4]   Well-covered circulant graphs [J].
Brown, Jason ;
Hoshino, Richard .
DISCRETE MATHEMATICS, 2011, 311 (04) :244-251
[5]   Independence polynomials of circulants with an application to music [J].
Brown, Jason ;
Hoshino, Richard .
DISCRETE MATHEMATICS, 2009, 309 (08) :2292-2304
[6]  
Dochtermann A, 2016, ELECTRON J COMB, V23
[7]   Independence Complexes of Well-Covered Circulant Graphs [J].
Earl, Jonathan ;
Vander Meulen, Kevin N. ;
Van Tuyl, Adam .
EXPERIMENTAL MATHEMATICS, 2016, 25 (04) :441-451
[8]   Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers [J].
Ha, Huy Tai ;
Van Tuyl, Adam .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (02) :215-245
[9]  
Haghighi H, 2010, B MATH SOC SCI MATH, V53, P125
[10]  
HOCHSTER M, 1977, LECTURE NOTES PURE A, V26