STOCHASTIC HOPF BIFURCATION OF QUASI-INTEGRABLE HAMILTONIAN SYSTEMS WITH FRACTIONAL DERIVATIVE DAMPING

被引:4
作者
Hu, F.
Zhu, W. Q. [1 ]
Chen, L. C. [2 ]
机构
[1] Zhejiang Univ, Dept Mech, State Key Lab Fluid Power Transmiss & Control, Hangzhou 310027, Zhejiang, Peoples R China
[2] Huaqiao Univ, Coll Civil Engn, Xiamen 362021, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 04期
基金
中国国家自然科学基金;
关键词
Stochastic Hopf bifurcation; fractional derivative damping; quasi-integrable Hamiltonian system; stochastic averaging; VISCOELASTIC DAMPERS; CHAOTIC DYNAMICS; VAN; DISTURBANCES; STABILITY; EQUATION;
D O I
10.1142/S0218127412500836
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with fractional derivative damping is investigated. First, the averaged Ito stochastic differential equations for n motion integrals are obtained by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained and a criterion for determining the stochastic Hopf bifurcation of the system by using the average bifurcation parameter is proposed. An example is given to illustrate the proposed procedure in detail and the numerical results show the effect of fractional derivative order on the stochastic Hopf bifurcation.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Nonlinear fractional order viscoelasticity at large strains [J].
Adolfsson, K .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :233-246
[2]  
[Anonymous], 2008, FUNCTIONAL FRACTIONA
[3]   Toward an understanding of stochastic Hopf bifurcation: A case study [J].
Arnold, L ;
Namachchivaya, NS ;
SchenkHoppe, KR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (11) :1947-1975
[4]   FRACTIONAL CALCULUS IN THE TRANSIENT ANALYSIS OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
TORVIK, PJ .
AIAA JOURNAL, 1985, 23 (06) :918-925
[5]   Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Schurz, Henri .
CHAOS SOLITONS & FRACTALS, 2009, 39 (01) :72-82
[6]   STABILITY AND CONTROL OF STOCHASTIC-SYSTEMS WITH WIDEBAND NOISE DISTURBANCES .1. [J].
BLANKENSHIP, G ;
PAPANICOLAOU, GC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (03) :437-476
[7]  
Caponetto R., 2010, Modeling and control applications
[8]   Bifurcation control: Theories, methods, and applications [J].
Chen, GR ;
Moiola, JL ;
Wang, HO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (03) :511-548
[9]   Chaotic dynamics of the fractionally damped van der Pol equation [J].
Chen, Juhn-Horng ;
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 35 (01) :188-198
[10]   On stability, persistence, and Hopf bifurcation in fractional order dynamical systems [J].
El-Saka, H. A. ;
Ahmed, E. ;
Shehata, M. I. ;
El-Sayed, A. M. A. .
NONLINEAR DYNAMICS, 2009, 56 (1-2) :121-126