Carbon supports for methanol oxidation catalyst

被引:49
作者
Samant, PV [1 ]
Rangel, CM [1 ]
Romero, MH [1 ]
Fernandes, JB [1 ]
Figueiredo, JL [1 ]
机构
[1] Goa Univ, Dept Chem, Goa 403206, India
关键词
mesoporous carbon; electrocatalysts; methanol oxidation; direct methanol fuel cells;
D O I
10.1016/j.jpowsour.2005.02.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly mesoporous carbon was synthesized employing conventional sol-gel technique using resorcinol and formaldehyde. The porous carbon electrodes were characterized by X-ray powder diffraction, N-2, adsorption isotherm, atomic absorption spectroscopy (AAS). Platinum was anchored on support by the incipient wetness method and reduced to its metallic form using sodium formate as a reducing agent. The electrocatalysis for methanol oxidation on carbon supported Pt in acid and alkaline solutions were investigated. It was found that the activity of Pt for methanol oxidation was higher in alkaline than in acid medium. High mesopore surface area of carbon can significantly increase the metal dispersion and affect particle size, which favoured the progress of the electrochemical processes occurring during methanol oxidation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 84
页数:6
相关论文
共 33 条
[1]   Electrocatalysts for fuel cells [J].
Acres, GJK ;
Frost, JC ;
Hards, GA ;
Potter, RJ ;
Ralph, TR ;
Thompsett, D ;
Burstein, GT ;
Hutchings, GJ .
CATALYSIS TODAY, 1997, 38 (04) :393-400
[2]   Theory at the electrochemical interface: reversible potentials and potential-dependent activation energies [J].
Anderson, AB .
ELECTROCHIMICA ACTA, 2003, 48 (25-26) :3743-3749
[3]   METHANOL OXIDATION ON CARBON-SUPPORTED PT-SN ELECTRODES IN SILICOTUNGSTIC ACID [J].
ARICO, AS ;
KIM, H ;
SHUKLA, AK ;
RAVIKUMAR, MK ;
ANTONUCCI, V ;
GIORDANO, N .
ELECTROCHIMICA ACTA, 1994, 39 (05) :691-700
[4]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[5]   Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution [J].
Drillet, JF ;
Ee, A ;
Friedemann, J ;
Kötz, R ;
Schnyder, B ;
Schmidt, VM .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1983-1988
[6]   Methanol oxidation on an ink type electrode using Pt supported on high area carbons [J].
Gojkovic, SL ;
Vidakovic, TR .
ELECTROCHIMICA ACTA, 2001, 47 (04) :633-642
[7]   POROUS CARBON ANODES FOR THE DIRECT METHANOL FUEL-CELL .1. THE ROLE OF THE REDUCTION METHOD FOR CARBON SUPPORTED PLATINUM-ELECTRODES [J].
GOODENOUGH, JB ;
HAMNETT, A ;
KENNEDY, BJ ;
MANOHARAN, R ;
WEEKS, SA .
ELECTROCHIMICA ACTA, 1990, 35 (01) :199-207
[8]   Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation [J].
Gurau, B ;
Viswanathan, R ;
Liu, RX ;
Lafrenz, TJ ;
Ley, KL ;
Smotkin, ES ;
Reddington, E ;
Sapienza, A ;
Chan, BC ;
Mallouk, TE ;
Sarangapani, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) :9997-10003
[9]   Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions [J].
Hayden, BE ;
Malevich, DV ;
Pletcher, D .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (08) :395-399
[10]   Evaluation of platinum-based catalysts for methanol electro-oxidation in phosphoric acid electrolyte [J].
He, CZ ;
Kunz, HR ;
Fenton, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) :970-979