On the stability of a generalization of Jensen functional equation

被引:2
作者
Almahalebi, M. [1 ]
机构
[1] Ibn Tofail Univ, Coll Sci, Dept Math, Kenitra, Morocco
关键词
stability; hyperstability; Jensen functional equation; fixed point method; Banach space; FIXED-POINT APPROACH; HYPERSTABILITY; SPACES;
D O I
10.1007/s10474-017-0781-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the fixed point method, we investigate the stability of a generalization of Jensen functional equation Sigma(n-1)(k=0) f(x + b(k)y) - nf(x), where n is an element of N-2, b(k) = exp(2i pi k/n) for 0 <= k <= n - 1, in Banach spaces. Also, we prove the hyperstability results of this equation by the fixed point method.
引用
收藏
页码:187 / 198
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 2011, ACTA U APULENSIS
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[4]   A general functional equation and its stability [J].
Baker, JA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1657-1664
[6]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[7]  
Brzdek J., 2013, Abstr. Appl. Anal, V2013, DOI [10.1155/2013/401756, DOI 10.1155/2013/401756]
[8]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40
[9]   Remarks on hyperstability of the Cauchy functional equation [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2013, 86 (03) :255-267
[10]   A fixed point approach to the stability of functional equations in non-Archimedean metric spaces [J].
BrzdeK, Janusz ;
Cieplinski, Krzysztof .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :6861-6867