Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes

被引:134
作者
Cuan, Jing [1 ]
Zhou, You [2 ]
Zhou, Tengfei [1 ,3 ,4 ]
Ling, Shigang [5 ]
Rui, Kun [1 ]
Guo, Zaiping [1 ]
Liu, Huakun [1 ]
Yu, Xuebin [6 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[2] Ningbo Univ, Fac Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[3] South Cent Univ Nationalities, State Ethn Affairs Commiss, Key Lab Catalysis & Mat Sci, Wuhan 430074, Hubei, Peoples R China
[4] South Cent Univ Nationalities, Minist Educ, Wuhan 430074, Hubei, Peoples R China
[5] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[6] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
borohydrides; fast ionic conductors; solid-state batteries; solid-state electrolytes; SODIUM SUPERIONIC CONDUCTION; LITHIUM BATTERIES; POLYMER ELECTROLYTES; PHASE-STABILITY; HIGH-CAPACITY; NEGATIVE ELECTRODES; NANOCONFINED LIBH4; METAL BOROHYDRIDES; MAGNESIUM HYDRIDE; LICOO2; ELECTRODE;
D O I
10.1002/adma.201803533
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Borohydride solid-state electrolytes with room-temperature ionic conductivity up to approximate to 70 mS cm(-1) have achieved impressive progress and quickly taken their place among the superionic conductive solid-state electrolytes. Here, the focus is on state-of-the-art developments in borohydride solid-state electrolytes, including their competitive ionic-conductive performance, current limitations for practical applications in solid-state batteries, and the strategies to address their problems. To open, fast Li/Na/Mg ionic conductivity in electrolytes with BH4- groups, approaches to engineering borohydrides with enhanced ionic conductivity, and later on the superionic conductivity of polyhedral borohydrides, their correlated conductive kinetics/thermodynamics, and the theoretically predicted high conductive derivatives are discussed. Furthermore, the validity of borohydride pairing with coated oxides, sulfur, organic electrodes, MgH2, TiS2, Li4Ti5O12, electrode materials, etc., is surveyed in solid-state batteries. From the viewpoint of compatible cathodes, the stable electrochemical windows of borohydride solid-state electrolytes, the electrode/electrolyte interface behavior and battery device design, and the performance optimization of borohydride-based solid-state batteries are also discussed in detail. A comprehensive coverage of emerging trends in borohydride solid-state electrolytes is provided and future maps to promote better performance of borohydride SSEs are sketched out, which will pave the way for their further development in the field of energy storage.
引用
收藏
页数:31
相关论文
共 159 条
[1]   Ab initio Nonequilibrium Molecular Dynamics in the Solid Superionic Conductor LiBH4 [J].
Aeberhard, Philippe C. ;
Williams, Stephen R. ;
Evans, Denis J. ;
Refson, Keith ;
David, William I. F. .
PHYSICAL REVIEW LETTERS, 2012, 108 (09)
[2]   A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte [J].
Agostini, Marco ;
Aihara, Yuichi ;
Yamada, Takanobu ;
Scrosati, Bruno ;
Hassoun, Jusef .
SOLID STATE IONICS, 2013, 244 :48-51
[3]  
[Anonymous], 2015, Adv. Energy Mater, DOI DOI 10.1002/AENM.201401408
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   Na3SbS4: A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries [J].
Banerjee, Abhik ;
Park, Kern Ho ;
Heo, Jongwook W. ;
Nam, Young Jin ;
Moon, Chang Ki ;
Oh, Seung M. ;
Hong, Seung-Tae ;
Jung, Yoon Seok .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (33) :9634-9638
[6]   Nanoconfined LiBH4 as a Fast Lithium Ion Conductor [J].
Blanchard, Didier ;
Nale, Angeloclaudio ;
Sveinbjoernsson, Dadi ;
Eggenhuisen, Tamara M. ;
Verkuijlen, Margriet H. W. ;
Suwarno ;
Vegge, Tejs ;
Kentgens, Arno P. M. ;
de Jongh, Petra E. .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (02) :184-192
[7]   IONIC-CONDUCTIVITY IN LITHIUM IMIDE [J].
BOUKAMP, BA ;
HUGGINS, RA .
PHYSICS LETTERS A, 1979, 72 (06) :464-466
[8]   Fast ion conduction in garnet-type metal borohydrides Li3K3Ce2(BH4)12 and Li3K3La2(BH4)12 [J].
Brighi, M. ;
Schouwink, P. ;
Sadikin, Y. ;
Cerny, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 662 :388-395
[9]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[10]   Magnesium hydride as a high capacity negative electrode for lithium ion batteries [J].
Brutti, S. ;
Mulas, G. ;
Piciollo, E. ;
Panero, S. ;
Reale, P. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (29) :14531-14537