Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder

被引:107
作者
Kim, Jin-Young [1 ]
Cho, Sung-Bae [1 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul 03722, South Korea
关键词
electric energy; energy prediction; energy management system; deep learning; autoencoder; explainable AI;
D O I
10.3390/en12040739
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As energy demand grows globally, the energy management system (EMS) is becoming increasingly important. Energy prediction is an essential component in the first step to create a management plan in EMS. Conventional energy prediction models focus on prediction performance, but in order to build an efficient system, it is necessary to predict energy demand according to various conditions. In this paper, we propose a method to predict energy demand in various situations using a deep learning model based on an autoencoder. This model consists of a projector that defines an appropriate state for a given situation and a predictor that forecasts energy demand from the defined state. The proposed model produces consumption predictions for 15, 30, 45, and 60 min with 60-min demand to date. In the experiments with household electric power consumption data for five years, this model not only has a better performance with a mean squared error of 0.384 than the conventional models, but also improves the capacity to explain the results of prediction by visualizing the state with t-SNE algorithm. Despite unsupervised representation learning, we confirm that the proposed model defines the state well and predicts the energy demand accordingly.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption [J].
Ahmad, Muhammad Waseem ;
Mourshed, Monjur ;
Rezgui, Yacine .
ENERGY AND BUILDINGS, 2017, 147 :77-89
[2]  
[Anonymous], 2018, INT J ARTIF INTELL
[3]   Modeling and Simulating Long-Timescale Cascading Faults in Power Systems Caused by Line-Galloping Events [J].
Chen, Lizheng ;
Zhang, Hengxu ;
Li, Changgang ;
Sun, Huadong .
ENERGIES, 2017, 10 (09)
[4]  
Cho K, 2014, ARXIV14061078
[5]   Energy Consumption Prediction for Electric Vehicles Based on Real-World Data [J].
De Cauwer, Cedric ;
Van Mierlo, Joeri ;
Coosemans, Thierry .
ENERGIES, 2015, 8 (08) :8573-8593
[6]   Applying support vector machines to predict building energy consumption in tropical region [J].
Dong, B ;
Cao, C ;
Lee, SE .
ENERGY AND BUILDINGS, 2005, 37 (05) :545-553
[7]  
Dua D., 2007, UCI machine learning repository
[8]   Prediction of building energy consumption by using artificial neural networks [J].
Ekici, Betul Bektas ;
Aksoy, U. Teoman .
ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (05) :356-362
[9]  
Glorot X., 2010, P 13 INT C ART INT S, V9, P249
[10]   Prediction of hourly energy consumption in buildings based on a feedback artificial neural network [J].
González, PA ;
Zamarreño, JA .
ENERGY AND BUILDINGS, 2005, 37 (06) :595-601