Harnessing genomics to fast-track genetic improvement in aquaculture

被引:357
作者
Houston, Ross D. [1 ,2 ]
Bean, Tim P. [1 ,2 ]
Macqueen, Daniel J. [1 ,2 ]
Gundappa, Manu Kumar [1 ,2 ]
Jin, Ye Hwa [1 ,2 ]
Jenkins, Tom L. [3 ]
Selly, Sarah Louise C. [4 ]
Martin, Samuel A. M. [5 ]
Stevens, Jamie R. [3 ]
Santos, Eduarda M. [3 ]
Davie, Andrew [4 ]
Robledo, Diego [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Easter Bush Campus, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Royal Dick Sch Vet Studies, Easter Bush Campus, Edinburgh, Midlothian, Scotland
[3] Univ Exeter, Sustainable Aquaculture Futures, Biosci, Coll Life & Environm Sci, Exeter, Devon, England
[4] Univ Stirling, Inst Aquaculture, Stirling, Scotland
[5] Univ Aberdeen, Sch Biol Sci, Aberdeen, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
INFECTIOUS PANCREATIC NECROSIS; ATLANTIC SALMON; PISCIRICKETTSIA-SALMONIS; DISEASE RESISTANCE; SEX DETERMINATION; LYMPHOCYSTIS DISEASE; BREEDING PROGRAMS; WIDE ASSOCIATION; FISH; SELECTION;
D O I
10.1038/s41576-020-0227-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genetic improvement of production traits in aquaculture has great potential to help meet the rising seafood demands driven by human population growth. The authors review how genomics is being applied to aquaculture species at all stages of the domestication process to optimize selective breeding. Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.
引用
收藏
页码:389 / 409
页数:21
相关论文
共 224 条
[1]   Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research [J].
Abdelrahman, Hisham ;
ElHady, Mohamed ;
Alcivar-Warren, Acacia ;
Allen, Standish ;
Al-Tobasei, Rafet ;
Bao, Lisui ;
Beck, Ben ;
Blackburn, Harvey ;
Bosworth, Brian ;
Buchanan, John ;
Chappell, Jesse ;
Daniels, William ;
Dong, Sheng ;
Dunham, Rex ;
Durland, Evan ;
Elaswad, Ahmed ;
Gomez-Chiarri, Marta ;
Gosh, Kamal ;
Guo, Ximing ;
Hackett, Perry ;
Hanson, Terry ;
Hedgecock, Dennis ;
Howard, Tiffany ;
Holland, Leigh ;
Jackson, Molly ;
Jin, Yulin ;
Kahlil, Karim ;
Kocher, Thomas ;
Leeds, Tim ;
Li, Ning ;
Lindsey, Lauren ;
Liu, Shikai ;
Liu, Zhanjiang ;
Martin, Kyle ;
Novriadi, Romi ;
Odin, Ramjie ;
Palti, Yniv ;
Peatman, Eric ;
Proestou, Dina ;
Qin, Guyu ;
Reading, Benjamin ;
Rexroad, Caird ;
Roberts, Steven ;
Salem, Mohamed ;
Severin, Andrew ;
Shi, Huitong ;
Shoemaker, Craig ;
Stiles, Sheila ;
Tan, Suxu ;
Tang, Kathy F. J. .
BMC GENOMICS, 2017, 18
[2]  
Adams SL, 2015, METHODS MOL BIOL, V1257, P329, DOI 10.1007/978-1-4939-2193-5_14
[3]   Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability [J].
Ahmed, Nesar ;
Thompson, Shirley ;
Glaser, Marion .
ENVIRONMENTAL MANAGEMENT, 2019, 63 (02) :159-172
[4]   Genetic differences in host infectivity affect disease spread and survival in epidemics [J].
Anacleto, Osvaldo ;
Cabaleiro, Santiago ;
Villanueva, Beatriz ;
Saura, Maria ;
Houston, Ross D. ;
Woolliams, John A. ;
Doeschl-Wilson, Andrea B. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]  
Anderson JL, 2017, FRONT ECON GLOBAL, V17, P159, DOI 10.1108/S1574-871520170000017011
[6]   Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project [J].
Andersson, Leif ;
Archibald, Alan L. ;
Bottema, Cynthia D. ;
Brauning, Rudiger ;
Burgess, Shane C. ;
Burt, Dave W. ;
Casas, Eduardo ;
Cheng, Hans H. ;
Clarke, Laura ;
Couldrey, Christine ;
Dalrymple, Brian P. ;
Elsik, Christine G. ;
Foissac, Sylvain ;
Giuffra, Elisabetta ;
Groenen, Martien A. ;
Hayes, Ben J. ;
Huang, LuSheng S. ;
Khatib, Hassan ;
Kijas, James W. ;
Kim, Heebal ;
Lunney, Joan K. ;
McCarthy, Fiona M. ;
McEwan, John C. ;
Moore, Stephen ;
Nanduri, Bindu ;
Notredame, Cedric ;
Palti, Yniv ;
Plastow, Graham S. ;
Reecy, James M. ;
Rohrer, Gary A. ;
Sarropoulou, Elena ;
Schmidt, Carl J. ;
Silverstein, Jeffrey ;
Tellam, Ross L. ;
Tixier-Boichard, Michele ;
Tosser-Klopp, Gwenola ;
Tuggle, Christopher K. ;
Vilkki, Johanna ;
White, Stephen N. ;
Zhao, Shuhong ;
Zhou, Huaijun .
GENOME BIOLOGY, 2015, 16
[7]  
[Anonymous], POULTRY FISH WILDL S
[8]  
[Anonymous], CLEANER FISH BIOL AQ
[9]  
[Anonymous], 2019, FAO yearbook. Fishery and Aquaculture Statistics 2017/FAO annuaire. Statistiques des peches et de laquaculture 2017/FAO anuario. Estadisticas de pesca y acuicultura 2017
[10]  
[Anonymous], LUMPFISH CYCLOPTERUS