Inverse Filtering for Linear Gaussian State-Space Models

被引:0
|
作者
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Krishnamurthy, Vikram [2 ,3 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Automat Control, Stockholm, Sweden
[2] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Cornell Tech, Ithaca, NY 14853 USA
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers inverse filtering problems for linear Gaussian state-space systems. We consider three problems of increasing generality in which the aim is to reconstruct the measurements and/or certain unknown sensor parameters, such as the observation likelihood, given posteriors (i. e., the sample path of mean and covariance). The paper is motivated by applications where one wishes to calibrate a Bayesian estimator based on remote observations of the posterior estimates, e. g., determine how accurate an adversary's sensors are. We propose inverse filtering algorithms and evaluate their robustness with respect to noise (e. g., measurement or quantization errors) in numerical simulations.
引用
收藏
页码:5556 / 5561
页数:6
相关论文
共 50 条
  • [31] Backward Filtering Forward Deciding in Linear Non-Gaussian State Space Models
    Li, Yun-Peng
    Loeliger, Hans-Andrea
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [32] Gaussian Sum Filtering for Wiener State-Space Models with a Class of Non-Monotonic Piecewise Nonlinearities
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Aguero, Juan C.
    IFAC PAPERSONLINE, 2024, 58 (15): : 25 - 30
  • [34] Multichannel deconvolution of vibrational signals: A state-space inverse filtering approach
    Candy, J. V.
    Fisher, K. A.
    Markowicz, B. A.
    Paulsen, D. J.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (03): : 1749 - 1763
  • [35] Analysis of linear lung models based on state-space models
    Saatci, Esra
    Saatci, Ertugrul
    Akan, Aydin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 183
  • [36] Gaussian Flow Sigma Point Filter for Nonlinear Gaussian State-Space Models
    Nurminen, Henri
    Piche, Robert
    Godsill, Simon
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 445 - 452
  • [37] Learning stochastically stable Gaussian process state-space models
    Umlauft, Jonas
    Hirche, Sandra
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2020, 12
  • [38] Switching state-space models - Likelihood function, filtering and smoothing
    Billio, M
    Monfort, A
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 68 (01) : 65 - 103
  • [39] ESTIMATION OF STATE-SPACE MODELS WITH GAUSSIAN MIXTURE PROCESS NOISE
    Miran, Sina
    Simon, Jonathan Z.
    Fu, Michael C.
    Marcus, Steven I.
    Babadi, Behtash
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 185 - 189
  • [40] FAST VARIATIONAL LEARNING IN STATE-SPACE GAUSSIAN PROCESS MODELS
    Chang, Paul E.
    Wilkinson, William J.
    Khan, Mohammad Emtiyaz
    Solin, Arno
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,