Inverse Filtering for Linear Gaussian State-Space Models

被引:0
|
作者
Mattila, Robert [1 ]
Rojas, Cristian R. [1 ]
Krishnamurthy, Vikram [2 ,3 ]
Wahlberg, Bo [1 ]
机构
[1] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Dept Automat Control, Stockholm, Sweden
[2] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Cornell Tech, Ithaca, NY 14853 USA
基金
瑞典研究理事会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers inverse filtering problems for linear Gaussian state-space systems. We consider three problems of increasing generality in which the aim is to reconstruct the measurements and/or certain unknown sensor parameters, such as the observation likelihood, given posteriors (i. e., the sample path of mean and covariance). The paper is motivated by applications where one wishes to calibrate a Bayesian estimator based on remote observations of the posterior estimates, e. g., determine how accurate an adversary's sensors are. We propose inverse filtering algorithms and evaluate their robustness with respect to noise (e. g., measurement or quantization errors) in numerical simulations.
引用
收藏
页码:5556 / 5561
页数:6
相关论文
共 50 条
  • [21] Filtering and smoothing of state vector for diffuse state-space models
    Koopman, SJ
    Durbin, J
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (01) : 85 - 98
  • [22] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [23] On Filtering and Smoothing Algorithms for Linear State-Space Models Having Quantized Output Data
    Cedeno, Angel L.
    Gonzalez, Rodrigo A.
    Godoy, Boris I.
    Carvajal, Rodrigo
    Aguero, Juan C.
    MATHEMATICS, 2023, 11 (06)
  • [24] APPROXIMATING THE LIKELIHOOD RATIO IN LINEAR-GAUSSIAN STATE-SPACE MODELS FOR CHANGE DETECTION
    Tsampourakis, Kostas
    Elvira, Victor
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5912 - 5916
  • [25] Laplace Approximated Gaussian Process State-Space Models
    Lindinger, Jakob
    Rakitsch, Barbara
    Lippert, Christoph
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1199 - 1209
  • [26] Localizing, Forgetting, and Likelihood Filtering in State-Space Models
    Loeliger, Hans-Andrea
    Bolliger, Lukas
    Reller, Christoph
    Korl, Sascha
    2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 181 - +
  • [27] Adaptive kernels in approximate filtering of state-space models
    Dedecius, Kamil
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (06) : 938 - 952
  • [28] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962
  • [29] ROBUST STABILITY IN LINEAR STATE-SPACE MODELS
    JIANG, CL
    INTERNATIONAL JOURNAL OF CONTROL, 1988, 48 (02) : 813 - 816
  • [30] GHF-KF filtering algorithm for conditionally linear Gaussian state space models
    Dept. of Electrical Engineering, Fudan Univ., Shanghai 200433, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2008, 12 (2312-2315):