Hydroelasto-plasticity approach to predicting the post-ultimate strength behavior of a ship's hull girder in waves

被引:40
作者
Iijima, Kazuhiro [1 ]
Kimura, Kazuhiro [1 ]
Xu, Weijun [1 ,2 ]
Fujikubo, Masahiko [1 ]
机构
[1] Osaka Univ, Dept Naval Architecture & Ocean Engn, Osaka, Japan
[2] Harbin Engn Univ, Coll Shipbldg Engn, Harbin, Peoples R China
关键词
Hull girder; Post-ultimate strength behavior; Hydroelasto-plasticity; Scaled model; Collapse; Tank test;
D O I
10.1007/s00773-011-0142-1
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Dynamic collapse behavior of a ship's hull girder in waves is investigated; post-ultimate strength behavior is the focus. Firstly, a simulation method is proposed. Assuming that a plastic hinge is formed during the collapse of the hull girder, the whole ship is modeled as two rigid bodies connected amidship via a nonlinear rotational spring. The post-ultimate strength behavior, such as the reduction of load carrying capacity due to buckling and yielding, is reflected in the model. Hydrodynamic loads are evaluated by using nonlinear strip theory to account for the effect of large plastic deformations on the loads. A scaled model for validation of the simulation is designed and fabricated. Then a series of tank tests is conducted using the scaled model to validate the simulation results. Post-ultimate strength behavior characteristics in waves are clarified by using the numerical and tank test results. It is shown that the hull girder collapses rapidly after reaching ultimate strength, and then the plastic deformation grows until unloading starts at the collapsed section. Finally, several parametric dependencies of the extent of the collapse behavior are discussed based on a series of the simulations.
引用
收藏
页码:379 / 389
页数:11
相关论文
共 25 条
  • [1] Caldwell J.B., 1965, T RINA, V107, P411
  • [2] FRANK W, 1970, 3289 NSRDC
  • [3] Fujino M., 1984, J SOC NAV ARCH JPN, V156, P144
  • [4] IACS, 1989, UN REQ STRENGTH SHIP
  • [5] *IACS, 2005, COMM STRUCT RUL DOUB
  • [6] *IACS, 2005, COMM STRUCT RUL BULK
  • [7] Iijima K, 2010, P 4 INT MAR C DES SA
  • [8] Jensen J.J., 1978, Trans Royal Inst Naval Architects (RINA), V120, P151
  • [9] Extreme response predictions for jack-up units in second order stochastic waves by FORM
    Jensen, Jorgen Juncher
    Capul, Julien
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2006, 21 (04) : 330 - 337
  • [10] Kawabe H, 2005, INT OFFSHORE POLAR E, P737