Bifurcations of a predator-prey model with non-monotonic response function

被引:17
作者
Broer, HW
Naudot, V
Roussarie, R
Saleh, K
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[2] Inst Math Bourgogne, F-21078 Dijon, France
关键词
D O I
10.1016/j.crma.2005.09.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-dimensional predator-prey model with five parameters is investigated, adapted from the Volterra-Lotka system by a non-monotonic response function. A description of the various domains of structural stability and their bifurcations is given. The bifurcation structure is reduced to four organising centres of codimension 3. Research is initiated on time-periodic perturbations by several examples of strange attractors. To cite this article: H. W. Broer et al., C R. Acad. Sci. Paris, Ser. 1341 (2005). (c) 2005 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:601 / 604
页数:4
相关论文
共 12 条
[1]   A MATHEMATICAL MODEL FOR CONTINUOUS CULTURE OF MICROORGANISMS UTILIZING INHIBITORY SUBSTRATES [J].
ANDREWS, JF .
BIOTECHNOLOGY AND BIOENGINEERING, 1968, 10 (06) :707-+
[2]  
[Anonymous], TOPOLOGY DIFFERENTIA
[3]  
[Anonymous], 2005, THESIS U GRONINGEN
[4]   THE INFLUENCE OF PREDATOR SATURATION EFFECT AND COMPETITION AMONG PREDATORS ON PREDATOR-PREY SYSTEM DYNAMICS [J].
BAZYKIN, AD ;
BEREZOVSKAYA, FS ;
DENISOV, GA ;
KUZNETZOV, YA .
ECOLOGICAL MODELLING, 1981, 14 (1-2) :39-57
[5]  
BROER HW, 2005, DYNAMICS PREDATOR PR
[6]  
DUMORTIER F, 1991, LECT NOTES MATH, V1480, pR5
[7]  
Kuznetsov Y., 1998, ELEMENTS APPL BIFURC
[8]  
Lotka A. J., 1925, P460
[9]  
Munkres J. R., 1963, ELEMENTARY DIFFERENT, VFall
[10]  
Palis J., 2012, Geometric theory of dynamical systems. An introduction