Assessment of the greenhouse gas emission footprint of a biorefinery over its life cycle

被引:10
|
作者
Giwa, Temitayo [1 ]
Akbari, Maryam [1 ,2 ]
Kumar, Amit [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, 10-263 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
[2] Nat Resources Canada NRCan, CanmetENERGY, 1615 Lionel Boulet Blvd, Varennes, PQ J3X 1P7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Greenhouse gas emissions; Biorefinery; Life cycle assessment; Ethanol; Fermentation; Pyrolysis; FAST PYROLYSIS; PRODUCTION COST; STEAM GASIFICATION; BIOMASS; ETHANOL; CHAR; SIMULATION; RECOVERY; BIOCHAR; RESIDUE;
D O I
10.1016/j.enconman.2022.116327
中图分类号
O414.1 [热力学];
学科分类号
摘要
Expanding the product portfolio of a biorefinery has the potential to improve the economics of the biorefinery as it not only increases revenue but also improves valuable feedstock use. Such process improvement, however, results in added complexity, energy consumption, and emissions. This study evaluated the energy consumption and greenhouse gas (GHG) emissions of an integrated multi-product biorefinery from a life cycle perspective. Six pathways were assessed in which the by-products of fast pyrolysis - biochar and non-condensable gases (NCGs) - were upgraded to produce ethanol and hydrogen, in addition to bio-oil. The six pathways include six corre-sponding biorefinery configurations. The configurations differ by NCG application and the kind of fuel used to supplement process heat demand. The GHG emissions intensity of the assessed pathways is between 13.54 and 43.13 gCO2eq/MJ. Our assessment shows a higher GHG emissions intensity in the assessed pathways than the base pathway, in which only bio-oil is produced. Generally, the emission intensities of biorefinery products are lower than when these products are produced from fossil sources but higher than when produced from dedicated bioenergy technologies. Also, when the products are put into an end-use application, like power generation, bio-oil shows lower life cycle GHG emissions compared to conventional fossil-based power plants. When the transportation of the products to the power plant is considered, the life cycle GHG emissions of hydrogen are higher than from the conventional generation methods. Sensitivity analyses show that reducing the feedstock moisture content and increasing ethanol titer can provide significant emission reduction potential. Outside the boundaries of the biorefineries, feedstock transportation also has an impact on the overall emissions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Life Cycle Greenhouse Gas Model of a Yellow Poplar Forest Residue Reductive Catalytic Fractionation Biorefinery
    Luo, Yuqing
    O'Dea, Robert M.
    Gupta, Yagya
    Chang, Jeffrey
    Sadula, Sunitha
    Soh, Li Pei
    Robbins, Allison M.
    Levia, Delphis F.
    Vlachos, Dionisios G.
    Epps, Thomas H.
    Ierapetritou, Marianthi
    ENVIRONMENTAL ENGINEERING SCIENCE, 2022, 39 (10) : 821 - 833
  • [2] Greenhouse Gas Emission Assessment of Simulated Wastewater Biorefinery
    Silva, Carla
    RESOURCES-BASEL, 2021, 10 (08):
  • [3] The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts
    Mahbub, Nafisa
    Gemechu, Eskinder
    Zhang, Hao
    Kumar, Amit
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2019, 34 : 173 - 186
  • [4] Life cycle assessment of two emerging sewage sludge-to-energy systems: Evaluating energy and greenhouse gas emissions implications
    Cao, Yucheng
    Pawlowski, Artur
    BIORESOURCE TECHNOLOGY, 2013, 127 : 81 - 91
  • [5] Greenhouse gas emission timing in life cycle assessment and the global warming potential of perennial energy crops
    Almeida, Joana
    Degerickx, Jeroen
    Achten, Wouter M. J.
    Muys, Bart
    CARBON MANAGEMENT, 2015, 6 (5-6) : 185 - 195
  • [6] Supply Cost and Life-Cycle Greenhouse Gas Footprint of Dry and Ensiled Biomass Sorghum for Biofuel Production
    Baral, Nawa Raj
    Dahlberg, Jeff
    Putnam, Daniel
    Mortimer, Jenny C.
    Scown, Corinne D.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (42): : 15855 - 15864
  • [7] Comparative life cycle assessment of a waste to ethanol biorefinery system versus conventional waste management methods
    Papadaskalopoulou, Christina
    Sotiropoulos, Aggelos
    Novacovic, Jelica
    Barabouti, Elli
    Mai, Sofia
    Malamis, Dimitris
    Kekos, Dimitris
    Loizidou, Maria
    RESOURCES CONSERVATION AND RECYCLING, 2019, 149 : 130 - 139
  • [8] Review on life cycle assessment of greenhouse gas emission profit of solar photovoltaic systems
    Wu, Peishi
    Ma, Xiaoming
    Ji, Junping
    Ma, Yunrong
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 1289 - 1294
  • [9] Life cycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspect
    Chen, Xiaodan
    Wang, Hao
    JOURNAL OF CLEANER PRODUCTION, 2018, 187 : 148 - 157
  • [10] Life cycle assessment is the most relevant framework to evaluate biofuel greenhouse gas burdens
    De Kleine, Robert D.
    Anderson, James E.
    Kim, Hyung Chul
    Wallington, Timothy J.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2017, 11 (03): : 407 - 416