Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance

被引:224
作者
Lee, Yong Kyu [1 ,2 ,3 ]
Luo, Zhongzhen [4 ]
Cho, Sung Pyo [5 ]
Kanatzidis, Mercouri G. [4 ,6 ]
Chung, In [1 ,2 ,3 ]
机构
[1] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 08826, South Korea
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Chem Proc, Seoul 08826, South Korea
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Seoul Natl Univ, Natl Ctr Inter Univ Res Facil, Seoul 08826, South Korea
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
新加坡国家研究基金会;
关键词
THERMAL-CONDUCTIVITY; NANOSTRUCTURED THERMOELECTRICS; FIGURE; MERIT; ZT;
D O I
10.1016/j.joule.2019.01.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tin selenide (SnSe) has emerged as a surprising new material with exceptional thermal transport and charge transport properties such as ultralow thermal conductivity, which give it a record-high thermoelectric figure of merit (ZT) of similar to 2.5-2.7 at around 800 K. These properties, however, have been only observable in well-prepared and properly handled single-crystal samples. Polycrystalline SnSe samples have markedly inferior properties paradoxically with higher apparent thermal conductivity and much lower ZT values than single crystals. The high thermal conductivity in polycrystalline samples has been attributed to surface tin oxides. Based on this hypothesis, we have employed an oxide-removing strategy that involves a chemical reduction process at 613 K under a 4% H-2/Ar atmosphere. This leads to an exceptionally low lattice thermal conductivity of similar to 0.11 W m(-1)K(-1) in polycrystalline hole-doped SnSe alloyed with 5% lead selenide, even lower than that of single crystals, and boosts the ZT to similar to 2.5 at 773 K.
引用
收藏
页码:719 / 731
页数:13
相关论文
共 33 条
[1]  
[Anonymous], 2018, ADV ENERGY MAT
[2]  
[Anonymous], ADV MAT
[3]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[4]   3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals [J].
Chang, Cheng ;
Wu, Minghui ;
He, Dongsheng ;
Pei, Yanling ;
Wu, Chao-Feng ;
Wu, Xuefeng ;
Yu, Hulei ;
Zhu, Fangyuan ;
Wang, Kedong ;
Chen, Yue ;
Huang, Li ;
Li, Jing-Feng ;
He, Jiaqing ;
Zhao, Li-Dong .
SCIENCE, 2018, 360 (6390) :778-782
[5]   CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions [J].
Chung, In ;
Song, Jung-Hwan ;
Im, Jino ;
Androulakis, John ;
Malliakas, Christos D. ;
Li, Hao ;
Freeman, Arthur J. ;
Kenney, John T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8579-8587
[6]   Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries [J].
Deng, Rigui ;
Su, Xianli ;
Zheng, Zheng ;
Liu, Wei ;
Yan, Yonggao ;
Zhang, Qingjie ;
Dravid, Vinayak P. ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. ;
Tang, Xinfeng .
SCIENCE ADVANCES, 2018, 4 (06)
[7]   Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials [J].
Fu, Chenguang ;
Bai, Shengqiang ;
Liu, Yintu ;
Tang, Yunshan ;
Chen, Lidong ;
Zhao, Xinbing ;
Zhu, Tiejun .
NATURE COMMUNICATIONS, 2015, 6
[8]   Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation [J].
Gingerich, Daniel B. ;
Mauter, Meagan S. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (14) :8297-8306
[9]   High Performance Na-doped PbTe-PbS Thermoelectric Materials: Electronic Density of States Modification and Shape-Controlled Nanostructures [J].
Girard, Steven N. ;
He, Jiaqing ;
Zhou, Xiaoyuan ;
Shoemaker, Daniel ;
Jaworski, Christopher M. ;
Uher, Ctirad ;
Dravid, Vinayak P. ;
Heremans, Joseph P. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16588-16597
[10]   Discovery-Synthesis, Design, and Prediction of Chalcogenide Phases [J].
Kanatzidis, Mercouri G. .
INORGANIC CHEMISTRY, 2017, 56 (06) :3158-3173