CT Texture Analysis Challenges: Influence of Acquisition and Reconstruction Parameters: A Comprehensive Review

被引:43
作者
Espinasse, Mathilde [1 ,2 ]
Pitre-Champagnat, Stephanie [1 ]
Charmettant, Benoit [1 ]
Bidault, Francois [1 ,3 ]
Volk, Andreas [1 ]
Balleyguier, Corinne [1 ,3 ]
Lassau, Nathalie [1 ,4 ]
Caramella, Caroline [1 ,3 ]
机构
[1] Univ Paris Saclay, CEA, CNRS,BioMaps, UMR 9011,INSERM,UMR1281,Inst Gustave Roussy, 114 Rue Edouard Vaillant, F-94800 Villejuif, France
[2] Ecole Normale Super Paris Saclay, 61 Ave President Wilson, F-94235 Cachan, France
[3] Gustave Roussy Canc Campus, Dept Imaging, 114 Rue Edouard Vaillant, F-94805 Villejuif, France
[4] Gustave Roussy Canc Campus, Res Dept, 114 Ave Edouard Vaillant, F-94805 Villejuif, France
关键词
radiomics; texture analysis; computed tomography; acquisition parameters; QUANTITATIVE FEATURES; RADIOMIC FEATURES; VARIABILITY; UNCERTAINTY; IMAGES;
D O I
10.3390/diagnostics10050258
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Texture analysis in medical imaging is a promising tool that is designed to improve the characterization of abnormal images from patients, to ultimately serve as a predictive or prognostic biomarker. However, the nature of image acquisition itself implies variability in each pixel/voxel value that could jeopardize the usefulness of texture analysis in the medical field. In this review, a search was performed to identify current published data for computed tomography (CT) texture reproducibility and variability. On the basis of this analysis, the critical steps were identified with a view of using texture analysis as a reliable tool in medical imaging. The need to specify the CT scanners used and the associated parameters in published studies is highlighted. Harmonizing acquisition parameters between studies is a crucial step for future texture analysis.
引用
收藏
页数:9
相关论文
共 33 条
[21]   LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity [J].
Nioche, Christophe ;
Orlhac, Fanny ;
Boughdad, Sarah ;
Reuze, Sylvain ;
Goya-Outi, Jessica ;
Robert, Charlotte ;
Pellot-Barakat, Claire ;
Soussan, Michael ;
Frouin, Frederique ;
Buvat, Irene .
CANCER RESEARCH, 2018, 78 (16) :4786-4789
[22]   The Use of Quantitative Imaging in Radiation Oncology: A Quantitative Imaging Network (QIN) Perspective [J].
Press, Robert H. ;
Shu, Hui-Kuo G. ;
Shim, Hyunsuk ;
Mountz, James M. ;
Kurland, Brenda F. ;
Wahl, Richard L. ;
Jones, Ella F. ;
Hylton, Nola M. ;
Gerstner, Elizabeth R. ;
Nordstrom, Robert J. ;
Henderson, Lori ;
Kurdziel, Karen A. ;
Vikram, Bhadrasain ;
Jacobs, Michael A. ;
Holdhoff, Matthias ;
Taylor, Edward ;
Jaffray, David A. ;
Schwartz, Lawrence H. ;
Mankoff, David A. ;
Kinahan, Paul E. ;
Linden, Hannah M. ;
Lambin, Philippe ;
Dilling, Thomas J. ;
Rubin, Daniel L. ;
Hadjiiski, Lubomir ;
Buatti, John M. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :1219-1235
[23]   Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels [J].
Shafiq-ul-Hassan, Muhammad ;
Zhang, Geoffrey G. ;
Latifi, Kujtim ;
Ullah, Ghanim ;
Hunt, Dylan C. ;
Balagurunathan, Yoganand ;
Abdalah, Mahmoud Abrahem ;
Schabath, Matthew B. ;
Goldgof, Dmitry G. ;
Mackin, Dennis ;
Court, Laurence Edward ;
Gillies, Robert James ;
Moros, Eduardo Gerardo .
MEDICAL PHYSICS, 2017, 44 (03) :1050-1062
[24]   Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm [J].
Solomon, Justin ;
Mileto, Achille ;
Nelson, Rendon C. ;
Choudhury, Kingshuk Roy ;
Samei, Ehsan .
RADIOLOGY, 2016, 279 (01) :185-194
[25]   MaZda-A software package for image texture analysis [J].
Szczypinski, Piotr M. ;
Strzelecki, Michal ;
Materka, Andrzej ;
Klepaczko, Artur .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 94 (01) :66-76
[26]   Radiomics and radiogenomics in lung cancer: A review for the clinician [J].
Thawani, Rajat ;
McLane, Michael ;
Beig, Niha ;
Ghose, Soumya ;
Prasanna, Prateek ;
Velcheti, Vamsidhar ;
Madabhushi, Anant .
LUNG CANCER, 2018, 115 :34-41
[27]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[28]   Uncertainty analysis of quantitative imaging features extracted from contrast-enhanced CT in lung tumors [J].
Yang, Jinzhong ;
Zhang, Lifei ;
Fave, Xenia J. ;
Fried, David V. ;
Stingo, Francesco C. ;
Ng, Chaan S. ;
Court, Laurence E. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2016, 48 :1-8
[29]   Applications and limitations of radiomics [J].
Yip, Stephen S. F. ;
Aerts, Hugo J. W. L. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) :R150-R166
[30]   Ibex: An open infrastructure software platform to facilitate collaborative work in radiomics [J].
Zhang, Lifei ;
Fried, David V. ;
Fave, Xenia J. ;
Hunter, Luke A. ;
Yang, Jinzhong ;
Court, Laurence E. .
Medical Physics, 2015, 42 (03)