On the geometry of lightlike submanifolds of indefinite statistical manifolds

被引:3
作者
Jain, Varun [1 ]
Singh, Amrinder Pal [2 ]
Kumar, Rakesh [2 ]
机构
[1] Multani Mal Modi Coll, Dept Math, Patiala 147001, Punjab, India
[2] Punjabi Univ, Dept Basic & Appl Sci, Patiala 147002, Punjab, India
关键词
Indefinite statistical manifolds; lightlike submanifolds; statistical curvature tensor; induced statistical Ricci tensor;
D O I
10.1142/S0219887820500991
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study lightlike submanifolds of indefinite statistical manifolds. Contrary to the classical theory of submanifolds of statistical manifolds, lightlike submanifolds of indefinite statistical manifolds need not to be statistical submanifold. Therefore, we obtain some conditions for a lightlike submanifold of indefinite statistical manifolds to be a lightlike statistical submanifold. We derive the expression of statistical sectional curvature and finally obtain some conditions for the induced statistical Ricci tensor on a lightlike submanifold of indefinite statistical manifolds to be symmetric.
引用
收藏
页数:17
相关论文
共 10 条
[1]  
Amari S., 2000, TRANSLATED MATH MONO, V191
[2]  
Amari S-i., 2012, Differential-Geometrical Methods in Statistics, Vvol 28
[3]  
[Anonymous], 2018, PATIENT
[4]  
Calin O., 2014, Geometric Modeling in Probability and Statistics
[5]  
Duggal K. L., 1996, MATH ITS APPL, V364
[6]  
Duggal K. L., 2003, Kodai Math. J., V26, P49, DOI DOI 10.2996/KMJ/1050496648
[7]  
Duggal KL, 2010, FRONT MATH, P1, DOI 10.1007/978-3-0346-0251-8
[8]  
Furuhata H., 2016, Geometry of Cauchy-Riemann Submanifolds, P179
[9]   Hypersurfaces in statistical manifolds [J].
Furuhata, Hitoshi .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (03) :420-429
[10]  
Shima H., 2007, The geometry of Hessian structures, DOI DOI 10.1142/6241