A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations

被引:20
作者
Ahmad, Shabir [1 ]
Ullah, Aman [1 ]
Akgul, Ali [2 ]
Jarad, Fahd [3 ,4 ,5 ]
机构
[1] Univ Malakand, Dept Math, Dir Lower, Khyber Pakhtunk, Pakistan
[2] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
[3] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[4] King Abdulaziz Univ, Jeddah, Saudi Arabia
[5] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
关键词
Yang transform; homotopy perturbation method; power law kernel;
D O I
10.3934/math.2022521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is important to deal with the exact solution of nonlinear PDEs of non-integer orders. Integral transforms play a vital role in solving differential equations of integer and fractional orders. 'o obtain analytical solutions to integer and fractional-order DEs, a few transforms, such as Laplace transforms, Sumudu transforms, and Elzaki transforms, have been widely used by researchers. We propose the Yang transform homotopy perturbation (YTHP) technique in this paper. We present the relation of Yang transform (YT) with the Laplace transform. We find a formula for the YT of fractional derivative in Caputo sense. We deduce a procedure for computing the solution of fractional-order nonlinear PDEs involving the power-law kernel. We show the convergence and error estimate of the suggested method. We give some examples to illustrate the novel method. We provide a comparison between the approximate solution and exact solution through tables and graphs.
引用
收藏
页码:9389 / 9404
页数:16
相关论文
共 20 条
  • [11] Nonlinear analysis of a nonlinear modified KdV equation under Atangana Baleanu Caputo derivative
    Gulalai
    Ahmad, Shabir
    Rihan, Fathalla Ali
    Ullah, Aman
    Al-Mdallal, Qasem M.
    Akgul, Ali
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 7847 - 7865
  • [12] Application of homotopy perturbation method to nonlinear wave equations
    He, JH
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 695 - 700
  • [13] Homotopy perturbation technique
    He, JH
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 178 (3-4) : 257 - 262
  • [14] Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel
    Ozarslan, Ramazan
    Bas, Erdal
    Baleanu, Dumitru
    Acay, Bahar
    [J]. AIMS MATHEMATICS, 2020, 5 (01): : 467 - 481
  • [15] Rahman F, 2021, INT J APPL COMPUT MA, V7, P192, DOI [10.1007/s40819-021-01128-w, DOI 10.1007/S40819-021-01128-W]
  • [16] Analysis of nonlinear time-fractional Klein-Gordon equation with power law kernel
    Saifullah, Sayed
    Ali, Amir
    Khan, Zareen A.
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5275 - 5290
  • [17] Time-Fractional Klein-Gordon Equation with Solitary/Shock Waves Solutions
    Saifullah, Sayed
    Ali, Amir
    Irfan, Muhammad
    Shah, Kamal
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [18] Schi J.L., 1999, The Laplace transform: theory and applications, DOI 10.1007 978-0-387-22757-3
  • [19] Watugala GK, 1998, MATH ENG IND, V6, P319
  • [20] A NEW INTEGRAL TRANSFORM METHOD FOR SOLVING STEADY HEAT-TRANSFER PROBLEM
    Yang, Xiao-Jun
    [J]. THERMAL SCIENCE, 2016, 20 : S639 - S642