Optimal error bounds for two-grid schemes applied to the Navier-Stokes equations

被引:14
作者
de Frutos, Javier [2 ]
Garcia-Archilla, Bosco [3 ]
Novo, Julia [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Valladolid, IMUVA, Inst Matemat, E-47002 Valladolid, Spain
[3] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
关键词
Two-grid methods; Mixed finite elements; Navier-Stokes equations; Optimal error estimates; FINITE-ELEMENT APPROXIMATION; NONLINEAR GALERKIN METHODS; 2-LEVEL METHOD; SPATIAL DISCRETIZATION; INERTIAL MANIFOLDS; REGULARITY; ACCURACY;
D O I
10.1016/j.amc.2011.12.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two-grid mixed-finite element schemes for the spatial discretization of the incompressible Navier-Stokes equations. A standard mixed-finite element method is applied over the coarse grid to approximate the nonlinear Navier-Stokes equations while a linear evolutionary problem is solved over the fine grid. The previously computed Galerkin approximation to the velocity is used to linearize the convective term. For the analysis we take into account the lack of regularity of the solutions of the Navier-Stokes equations at the initial time in the absence of nonlocal compatibility conditions of the data. Optimal error bounds are obtained. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7034 / 7051
页数:18
相关论文
共 38 条
[1]   A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme [J].
Abboud, Hyam ;
Sayah, Toni .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :141-174
[2]   A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme [J].
Abboud, Hyam ;
Girault, Vivette ;
Sayah, Toni .
NUMERISCHE MATHEMATIK, 2009, 114 (02) :189-231
[3]  
Adams A., 2003, Sobolev Spaces, V140
[4]  
Amni A. Ait Ou, 1994, NUMER MATH, V62, P189
[5]  
[Anonymous], 1988, Chicago Lectures in Mathematics
[6]  
[Anonymous], 1972, HDB MATH FUNCTIONS F
[7]   The postprocessed mixed finite-element method for the Navier-Stokes equations [J].
Ayuso, B ;
García-Archilla, B ;
Novo, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) :1091-1111
[8]   Regularity constants of the Stokes problem.: Application to finite-element methods on curved domains [J].
Ayuso, B ;
García-Archilla, B .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (03) :437-470
[9]  
Ayuso B, 2007, IMA J NUMER ANAL, V27, P198, DOI [10.1093/imanum/drl010, 10.1093/imanum/dr1010]
[10]   STABILITY OF HIGHER-ORDER HOOD-TAYLOR METHODS [J].
BREZZI, F ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :581-590