3-dimensional sundials

被引:14
作者
Carlini, Enrico [1 ]
Catalisano, Maria Virginia [2 ]
Geramita, Anthony V. [3 ,4 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Univ Genoa, Fac Ingn, DIPTEM Dipartimento Ingn Prod Termoenerget & Mode, I-16129 Genoa, Italy
[3] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[4] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2011年 / 9卷 / 05期
关键词
Hilbert functions; Subspace arrangements; Configuration of linear spaces; Degenerations; Castelnuovo's sequence; Specializations; SECANT VARIETIES; SEGRE VARIETIES; X P-1;
D O I
10.2478/s11533-011-0054-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on a"(TM) (n) , na parts per thousand yen3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).
引用
收藏
页码:949 / 971
页数:23
相关论文
共 16 条
[1]  
Abo H, 2009, T AM MATH SOC, V361, P767
[2]  
Alexander J., 1995, J. Algebraic Geom., V4, P201
[3]  
Burgisser P., 1997, ALGEBRAIC COMPLEXITY, V315
[4]  
CARLINI E, REDUCED NONRED UNPUB
[5]   Complete intersections on general hypersurfaces [J].
Carlini, Enrico ;
Chiantini, Luca ;
Geramita, Anthony V. .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 57 :121-136
[6]   Bipolynomial Hilbert functions [J].
Carlini, Enrico ;
Catalisano, Maria Virginia ;
Geramita, Anthony V. .
JOURNAL OF ALGEBRA, 2010, 324 (04) :758-781
[7]  
Catalisano MV, 2007, COLLECT MATH, V58, P1
[8]  
CATALISANO M. V., 2005, PROJECTIVE VARIETIES, P81
[9]   SECANT VARIETIES OF P1 x ... x P1 (n-TIMES) ARE NOT DEFECTIVE FOR n ≥ 5 [J].
Catalisano, Maria Virginia ;
Geramita, Anthony V. ;
Gimigliano, Alessandro .
JOURNAL OF ALGEBRAIC GEOMETRY, 2011, 20 (02) :295-327
[10]   Secant varieties of Grassmann varieties [J].
Catalisano, MV ;
Geramita, AV ;
Gimigliano, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :633-642