A simple construction of the fractional Brownian motion

被引:44
作者
Enriquez, N [1 ]
机构
[1] Univ Paris 06, Probabil Lab, F-75005 Paris, France
关键词
correlated random walks; random environment; fractional Brownian motion;
D O I
10.1016/j.spa.2003.10.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we introduce correlated random walks on Z. When picking suitably at random the coefficient of correlation, and taking the average over a large number of walks, we obtain a discrete Gaussian process, whose scaling limit is the fractional Brownian motion. We have to use two radically different models for both cases 1/2 less than or equal to H < 1 and 0 < H < 1/2. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:203 / 223
页数:21
相关论文
共 14 条
[1]  
[Anonymous], 1981, LECT NOTES MATH
[2]  
[Anonymous], 1986, Dependence in probability and statistics (Oberwolfach, 1985)
[3]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[4]  
ENRIQUEZ N, 2002, PREPUBLICATION LAB P, V754
[5]  
Feller W., 1991, An Introduction to Probability Theory and Its Applications, VII
[6]   ON BIRTH AND DEATH PROCESSES IN SYMMETRIC RANDOM ENVIRONMENT [J].
KAWAZU, K ;
KESTEN, H .
JOURNAL OF STATISTICAL PHYSICS, 1984, 37 (5-6) :561-576
[7]   LIMIT-THEOREM RELATED TO A NEW CLASS OF SELF SIMILAR PROCESSES [J].
KESTEN, H ;
SPITZER, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (01) :5-25
[8]   Renewal reward processes with heavy-tailed inter-renewal times and heavy-tailed rewards [J].
Levy, JB ;
Taqqu, MS .
BERNOULLI, 2000, 6 (01) :23-44
[9]  
Mandelbrot B., 1969, INT ECON REV, V10, P82, DOI DOI 10.2307/2525574
[10]   Fast and exact synthesis for 1-D fractional brownian motion and fractional Gaussian noises [J].
Perrin, E ;
Harba, R ;
Jennane, R ;
Iribarren, I .
IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (11) :382-384