An optimal matching problem

被引:29
作者
Ekeland, I [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V6T 1Z2, Canada
关键词
optimal transportation; measure-preserving maps;
D O I
10.1051/cocv:2004034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given two measured spaces (X, mu) and (Y, nu), and a third space Z, given two functions u(x, z) and upsilon(x, z), we study the problem of finding two maps s : X -> Z and t : Y -> Z such that the images s(mu) and t(nu) coincide, and the integral integral(X) u(x, s(x))d mu - integral(Y) upsilon(y, t(y))d nu is maximal. We give condition on u and upsilon for which there is a unique solution.
引用
收藏
页码:57 / 71
页数:15
相关论文
共 8 条
[1]  
[Anonymous], 1998, MASS TRANSPORTATION
[3]  
CARLIER G, 2003, ADV MATH EC, V5, P1
[4]   Identification and estimation of hedonic models [J].
Ekeland, I ;
Heckman, JJ ;
Nesheim, L .
JOURNAL OF POLITICAL ECONOMY, 2004, 112 (01) :S60-S109
[5]  
EKELAND I, 1999, APPL MATH
[6]   The geometry of optimal transportation [J].
Gangbo, W ;
McCann, RJ .
ACTA MATHEMATICA, 1996, 177 (02) :113-161
[7]  
Kantorovich L., 1942, DOKL AKAD NAUK+, V37, P7
[8]  
VILLANI C., 2003, GRAD STUD MATH, V58