TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance

被引:59
|
作者
Wang, Huiqin [1 ]
Li, Hongda [1 ]
Chen, Zhuowen [1 ]
Li, Jinze [2 ]
Li, Xin [2 ]
Huo, Pengwei [2 ]
Wang, Qian [1 ]
机构
[1] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
TiO2; C3N4; Ball-milling and calcination; Composite photocatalyst; Reduction of CO2; IN-SITU SYNTHESIS; COMPOSITE PHOTOCATALYST; EFFICIENT PHOTOCATALYST; CARBON-DIOXIDE; HETEROJUNCTION; PHOTOREDUCTION; DEGRADATION; HYBRID; NANOCOMPOSITES; PHOTODEGRADATION;
D O I
10.1016/j.solidstatesciences.2019.106099
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Titanium dioxide (TiO2) modified g-C3N4 for composite photocatalysts were fabricated by using ball-milling and calcination. The physicochemical properties of as-obtained photocatalysts were characterized by XRD, XPS, SEM, TEM, UV-vis DRS, PL and Photocurrents. The results show that the heterostructure successfully formed between TiO2 and C3N4, and the heterostructure could effectively enhance the separation rate of the photogenerated electrons and holes. Also the positions of conduction band (CB) and valence band (VB) changed with improving the amount of TiO2 in the as-prepared photocatalysts. The photocatalytic activities of as-prepared photocatalysts were investigated by photoreduction of CO2, the results exhibit that the composite photocatalysts clearly improve the photoreduction of CO2 to CH4 and CO. The highest yields of CH4 and CO are of 72.2 and 56.2 mu mol g(-1) at an optimized modified amounts of TiO2 under 4 h irradiation of 8 W UV lamp, respectively. The strategy of TiO2 modified C3N4 could successfully obtain effective photocatalyst for CO2 conversion.
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
    Huang, Xiaoyue
    Hu, Yan
    Zhou, Liang
    Lei, Juying
    Wang, Lingzhi
    Zhang, Jinlong
    Journal of CO2 Utilization, 2021, 54
  • [12] Fabrication of CuS-modified inverse opal g-C3N4 photocatalyst with enhanced performance of photocatalytic reduction of CO2
    Huang, Xiaoyue
    Hu, Yan
    Zhou, Liang
    Lei, Juying
    Wang, Lingzhi
    Zhang, Jinlong
    JOURNAL OF CO2 UTILIZATION, 2021, 54
  • [13] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [14] Investigation on g-C3N4/rGO/TiO2 nanocomposite with enhanced photocatalytic degradation performance
    Hu, Faguan
    Sun, Shiping
    Xu, Hongliang
    Li, Mingliang
    Hao, Xiaofei
    Shao, Gang
    Wang, Hailong
    Chen, Deliang
    Lu, Hongxia
    Zhang, Rui
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 156 (156)
  • [15] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    PHOTOCHEM, 2021, 1 (03): : 462 - 476
  • [16] Synthesis of g-C3N4/TiO2 nanostructures for enhanced photocatalytic reduction of U(vi) in water
    Liu, Yuelin
    Wu, Shanshan
    Liu, Jun
    Xie, Shuibo
    Liu, Yingjiu
    RSC ADVANCES, 2021, 11 (08) : 4810 - 4817
  • [17] g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination
    Shibo Li
    Wei Zhao
    Dezhi Xiong
    Yao Ye
    Jianli Ma
    Yanzhu Gu
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [18] g-C3N4/TiO2 uniformly distributed microspheres: preparation for enhanced photocatalytic performance by co-calcination
    Li, Shibo
    Zhao, Wei
    Xiong, Dezhi
    Ye, Yao
    Ma, Jianli
    Gu, Yanzhu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (01)
  • [19] Constructing and Photocatalytic Performance of g-C3N4/Ag/TiO2 Composites
    Li Ping
    Zhang Xiao-Xian
    Si Ying
    Liang Ting-Ting
    Liu Huan
    Qiu Ling-Fang
    Duan Shu-Qi
    Duo Shu-Wang
    Chen Zhong
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (03) : 566 - 574
  • [20] Selecting a synthetic route of copper-modified g-C3N4/TiO2 photocatalysts for efficient CO2 reduction
    Kurenkova, Anna Yu.
    Saraev, Andrey A.
    Alekseev, Roman F.
    Zhurenok, Angelina V.
    Mishchenko, Denis D.
    Gerasimov, Evgeny Yu.
    Kozlova, Ekaterina A.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 173