Carrier-Noise-Enhanced Relative Intensity Noise of Quantum Dot Lasers

被引:28
作者
Duan, Jianan [1 ,2 ]
Wang, Xing-Guang [2 ]
Zhou, Yue-Guang [2 ]
Wang, Cheng [2 ]
Grillot, Frederic [1 ,3 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, LTCI, F-75013 Paris, France
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
基金
中国国家自然科学基金;
关键词
Semiconductor lasers; quantum dots; relative intensity noise; frequency noise; OPTICAL FEEDBACK DYNAMICS; PHASE NOISE; IMPACT; STATES; GAIN;
D O I
10.1109/JQE.2018.2880452
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper numerically investigates the relative intensity noise of quantum dot lasers through a rate equation model taking into account both the spontaneous emission and carrier contributions. In particular, results show that the carrier noise originating from the ground and excited states significantly enhances the relative intensity noise of the laser, while that from the carrier reservoir does not. Simulations also point out that a large energy interval between the quantum confined levels is more suitable for low-intensity noise operation due to the reduced contribution from the carrier noise in the excited state. Finally, the carrier noise is found to have little impact on the frequency noise, thus being negligible for the investigation of the spectral linewidth. Overall, this paper is useful for designing low-noise quantum dot oscillators for high-speed communications, optical frequency combs, and radar applications.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Temperature stability of static and dynamic properties of 1.55 μm quantum dot lasers [J].
Abdollahinia, A. ;
Banyoudeh, S. ;
Rippien, A. ;
Schnabel, F. ;
Eyal, O. ;
Cestier, I. ;
Kalifa, I. ;
Mentovich, E. ;
Eisenstein, G. ;
Reithmaier, J. P. .
OPTICS EXPRESS, 2018, 26 (05) :6056-6066
[2]   Numerical modeling of intensity and phase noise in semiconductor lasers [J].
Ahmed, M ;
Yamada, M ;
Saito, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (12) :1600-1610
[3]   Widely tunable narrow-linewidth 1.5 μm light source based on a monolithically integrated quantum dot laser array [J].
Becker, A. ;
Sichkovskyi, V. ;
Bjelica, M. ;
Rippien, A. ;
Schnabel, F. ;
Kaiser, M. ;
Eyal, O. ;
Witzigmann, B. ;
Eisenstein, G. ;
Reithmaier, J. P. .
APPLIED PHYSICS LETTERS, 2017, 110 (18)
[4]  
Bello F., 2014, IEEE J QUANTUM ELECT, V50, P1
[5]   Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser [J].
Capua, A. ;
Rozenfeld, L. ;
Mikhelashvili, V. ;
Eisenstein, G. ;
Kuntz, M. ;
Laemmlin, M. ;
Bimberg, D. .
OPTICS EXPRESS, 2007, 15 (09) :5388-5393
[6]  
Coldren L. A., 2012, DIODE LASERS PHOTONI, V2nd
[7]   Limits on the performance of RF-over-fiber links and their impact on device design [J].
Cox, CH ;
Ackerman, EI ;
Betts, GE ;
Prince, JL .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (02) :906-920
[8]   Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers [J].
Duan, J. ;
Huang, H. ;
Lu, Z. G. ;
Poole, P. J. ;
Wang, C. ;
Grillot, F. .
APPLIED PHYSICS LETTERS, 2018, 112 (12)
[9]  
Eisenstein G., 2017, Green Photonics and Electronics
[10]  
Even J., 2016, SEMICONDUCTOR NANOCR