Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations

被引:112
|
作者
Paul, Fabian [1 ,2 ,3 ]
Wehmeyer, Christoph [1 ,2 ]
Abualrous, Esam T. [1 ,2 ]
Wu, Hao [1 ,2 ]
Crabtree, Michael D. [4 ]
Schoneberg, Johannes [1 ,2 ]
Clarke, Jane [4 ]
Freund, Christian [5 ]
Weikl, Thomas R. [3 ]
Noe, Frank [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
[3] Max Planck Inst Colloids & Interfaces, Dept Theory & Bio Syst, D-14476 Potsdam, Germany
[4] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[5] Free Univ Berlin, Inst Chem & Biochem, Thielallee 63, D-14195 Berlin, Germany
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
英国生物技术与生命科学研究理事会;
关键词
TARGET RESIDENCE TIME; ACCELERATED MOLECULAR-DYNAMICS; BIOMOLECULAR DYNAMICS; DISORDERED PROTEINS; FREE-ENERGIES; FORCE-FIELD; P53; PATHWAY; MDM2; BINDING; DISTRIBUTIONS;
D O I
10.1038/s41467-017-01163-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding and control of structures and rates involved in protein ligand binding are essential for drug design. Unfortunately, atomistic molecular dynamics (MD) simulations cannot directly sample the excessively long residence and rearrangement times of tightly binding complexes. Here we exploit the recently developed multi-ensemble Markov model framework to compute full protein-peptide kinetics of the oncoprotein fragment (25-109)Mdm2 and the nano-molar inhibitor peptide PMI. Using this system, we report, for the first time, direct estimates of kinetics beyond the seconds timescale using simulations of an all-atom MD model, with high accuracy and precision. These results only require explicit simulations on the sub-milliseconds timescale and are tested against existing mutagenesis data and our own experimental measurements of the dissociation and association rates. The full kinetic model reveals an overall downhill but rugged binding funnel with multiple pathways. The overall strong binding arises from a variety of conformations with different hydrophobic contact surfaces that interconvert on the milliseconds timescale.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations
    Fabian Paul
    Christoph Wehmeyer
    Esam T. Abualrous
    Hao Wu
    Michael D. Crabtree
    Johannes Schöneberg
    Jane Clarke
    Christian Freund
    Thomas R. Weikl
    Frank Noé
    Nature Communications, 8
  • [2] Author Correction: Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations
    Fabian Paul
    Christoph Wehmeyer
    Esam T. Abualrous
    Hao Wu
    Michael D. Crabtree
    Johannes Schöneberg
    Jane Clarke
    Christian Freund
    Thomas R. Weikl
    Frank Noé
    Nature Communications, 9
  • [3] Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations (vol 8, 2017)
    Paul, Fabian
    Wehmeyer, Christoph
    Abualrous, Esam T.
    Wu, Hao
    Crabtree, Michael D.
    Schoneberg, Johannes
    Clarke, Jane
    Freund, Christian
    Weikl, Thomas R.
    Noe, Frank
    NATURE COMMUNICATIONS, 2018, 9
  • [4] Atomistic simulation of protein-peptide binding with rigorous kinetics
    Chong, Lillian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [5] Efficient molecular dynamics simulations of protein-peptide binding kinetics
    Zwier, Matthew C.
    Kaus, Joseph W.
    Bhatt, Divesh
    Adelman, Joshua L.
    Grabe, Michael
    Zuckerman, Daniel M.
    Chong, Lillian T.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [6] Protein folding kinetics and thermodynamics from atomistic simulations
    van der Spoel, David
    Seibert, M. Marvin
    PHYSICAL REVIEW LETTERS, 2006, 96 (23)
  • [7] Machine Learning Methods to Push All-Atom MD Beyond the Seconds Timescale and Simulate Protein-Protein Association and Dissociation
    Noe, Frank
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 330A - 330A
  • [8] Millisecond Timescale, Atomistic Protein Folding Simulations Yield a Network Theory for Protein Folding
    Bowman, Gregory R.
    Pande, Vijay S.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 614A - 614A
  • [9] Association between Venom Immunotherapy and Changes in Serum Protein-Peptide Patterns
    Matysiak, Joanna
    Matuszewska, Eliza
    Kowalski, Marek L.
    Kosinski, Slawomir W.
    Smorawska-Sabanty, Ewa
    Matysiak, Jan
    VACCINES, 2021, 9 (03)
  • [10] Atomistic Simulations of Graphene Growth: From Kinetics to Mechanism
    Qiu, Zongyang
    Li, Pai
    Li, Zhenyu
    Yang, Jinlong
    ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (03) : 728 - 735