State of charge estimation for lithium-ion battery using Transformer with immersion and invariance adaptive observer

被引:65
作者
Shen, Heran [1 ]
Zhou, Xingyu [1 ]
Wang, Zejiang [1 ]
Wang, Junmin [1 ]
机构
[1] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
关键词
Lithium-ion battery; State of charge; Transformer neural network; Immersion and Invariance adaptive observer; OF-CHARGE; ALGORITHMS; PACK;
D O I
10.1016/j.est.2021.103768
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate state-of-charge (SOC) estimation lays the foundation for lithium-ion batteries' long-life and safe services. This paper exploits a new machine-learning method and an adaptive observer to estimate the battery's SOC. First, a Transformer neural-network is employed to predict the SOC with the sequence of current, voltage, and temperature data as inputs. Second, an innovative immersion and invariance (I&I) adaptive observer is applied to reduce the oscillations of the Transformer's prediction. The lead of the Transformer network lies in that it has an overview of the entire input sequence and obtains richer information than other conventional neural networks. Besides, the I&I adaptive observer is competent for correcting possible learning fluctuations and ensuring that the battery parameter estimation error is confined within an invariant manifold. The proposed methods are validated with experimental data. The results demonstrate their higher SOC estimation accuracy than a popular baseline method.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems [J].
Astolfi, A ;
Ortega, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) :590-606
[2]  
Bahdanau D., 2014, CORR, DOI DOI 10.48550/ARXIV.1409.0473
[3]   State of Charge and State of Health Estimation for Lithium Batteries Using Recurrent Neural Networks [J].
Chaoui, Hicham ;
Ibe-Ekeocha, Chinemerem Christopher .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (10) :8773-8783
[4]   Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter [J].
Chen, Zheng ;
Zhao, Hongqian ;
Shu, Xing ;
Zhang, Yuanjian ;
Shen, Jiangwei ;
Liu, Yonggang .
ENERGY, 2021, 228
[5]  
Cheng J., 2016, ARXIV160106733, P551, DOI [10.18653/v1/D16-1053, DOI 10.18653/V1/D16-1053]
[6]   Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery [J].
Deng, Zhongwei ;
Yang, Lin ;
Cai, Yishan ;
Deng, Hao ;
Sun, Liu .
ENERGY, 2016, 112 :469-480
[7]   Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG) [J].
Ee, Yen-Jie ;
Tey, Kok-Soon ;
Lim, Kok-Sing ;
Shrivastava, Prashant ;
Adnan, S. B. R. S. ;
Ahmad, Harith .
JOURNAL OF ENERGY STORAGE, 2021, 40 (40)
[8]   A Combined State of Charge Estimation Method for Lithium-Ion Batteries Used in a Wide Ambient Temperature Range [J].
Feng, Fei ;
Lu, Rengui ;
Zhu, Chunbo .
ENERGIES, 2014, 7 (05) :3004-3032
[9]  
Gehring J., 2017, ARXIV170503122, V70, P1243, DOI DOI 10.18653/V1/P16-1220
[10]   A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters [J].
Guo, Feng ;
Hu, Guangdi ;
Xiang, Shun ;
Zhou, Pengkai ;
Hong, Ru ;
Xiong, Neng .
ENERGY, 2019, 178 :79-88