Algebraic Bethe ansatz for the two species ASEP with different hopping rates

被引:25
作者
Cantini, Luigi [1 ]
机构
[1] Univ Paris Sud, CNRS, LPTMS, UMR8626, F-91405 Orsay, France
关键词
D O I
10.1088/1751-8113/41/9/095001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved, and the nested algebraic Bethe ansatz is used to derive the Bethe equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans [10]. We also present formulae for the total velocity of particles of a given type and their limit given the large size of the system and the finite densities of the particles.
引用
收藏
页数:16
相关论文
共 22 条
[1]   N-species stochastic models with boundaries and quadratic algebras [J].
Alcaraz, FC ;
Dasmahapatra, S ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :845-878
[2]   REACTION-DIFFUSION PROCESSES, CRITICAL-DYNAMICS, AND QUANTUM CHAINS [J].
ALCARAZ, FC ;
DROZ, M ;
HENKEL, M ;
RITTENBERG, V .
ANNALS OF PHYSICS, 1994, 230 (02) :250-302
[3]   Exact solution of asymmetric diffusion with second-class particles of arbitrary size [J].
Alcaraz, FC ;
Bariev, RZ .
BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) :13-26
[4]   Stochastic models on a ring and quadratic algebras. The three-species diffusion problem [J].
Arndt, PF ;
Heinzel, T ;
Rittenberg, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03) :833-843
[5]   Nonequilibrium steady states of matrix-product form: a solver's guide [J].
Blythe, R. A. ;
Evans, M. R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (46) :R333-R441
[6]   Exact large deviation function in the asymmetric exclusion process [J].
Derrida, B ;
Lebowitz, JL .
PHYSICAL REVIEW LETTERS, 1998, 80 (02) :209-213
[7]   An exactly soluble non-equilibrium system: The asymmetric simple exclusion process [J].
Derrida, B .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 301 (1-3) :65-83
[8]   EXACT SOLUTION OF THE TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS - SHOCK PROFILES [J].
DERRIDA, B ;
JANOWSKY, SA ;
LEBOWITZ, JL ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (5-6) :813-842
[9]   Bethe ansatz solution for a defect particle in the asymmetric exclusion process [J].
Derrida, B ;
Evans, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (26) :4833-4850
[10]  
DERRIDA B, 1996, STATPHYS 19