Ultra-low resistance ohmic contacts in graphene field effect transistors

被引:124
作者
Moon, J. S. [1 ]
Antcliffe, M. [1 ]
Seo, H. C. [1 ]
Curtis, D. [1 ]
Lin, S. [1 ]
Schmitz, A. [1 ]
Milosavljevic, I. [1 ]
Kiselev, A. A. [1 ]
Ross, R. S. [1 ]
Gaskill, D. K. [2 ]
Campbell, P. M. [2 ]
Fitch, R. C. [3 ]
Lee, K. -M. [4 ]
Asbeck, P. [4 ]
机构
[1] HRL Labs LLC, Malibu, CA 90265 USA
[2] USN, Res Lab, Washington, DC 20375 USA
[3] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA
[4] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
DEVICE;
D O I
10.1063/1.4719579
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on an experimental demonstration of graphene-metal ohmic contacts with contact resistance below 100 Omega mu m. These have been fabricated on graphene wafers, both with and without hydrogen intercalation, and measured using the transmission line method. Specific contact resistivities of 3 x 10(-7) to 1.2 x 10(-8) Omega cm(2) have been obtained. The ultra-low contact resistance yielded short-channel (source-drain distance of 0.45 mu m) HfO2/graphene field effect transistors (FETs) with a low on-resistance (R-on) of 550 Omega mu m and a high current density of 1.7 A/mm at a source-drain voltage of 1V. These values represent state-of-the-art (SOA) performance in graphene-metal contacts and graphene FETs. This ohmic contact resistance is comparable to that of SOA high-speed III-V high electron mobility transistors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4719579]
引用
收藏
页数:3
相关论文
共 17 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Epitaxial Graphene Growth on SiC Wafers [J].
Gaskill, D. K. ;
Jernigan, G. G. ;
Campbell, P. M. ;
Tedesco, J. L. ;
Culbertson, J. C. ;
VanMill, B. L. ;
Myers-Ward, R. L. ;
Eddy, C. R., Jr. ;
Moon, J. ;
Curtis, D. ;
Hu, M. ;
Wong, D. ;
McGuire, C. ;
Robinson, J. A. ;
Fanton, M. A. ;
Stitt, J. P. ;
Stitt, T. ;
Snyder, D. ;
Wang, X. ;
Frantz, E. .
GRAPHENE AND EMERGING MATERIALS FOR POST-CMOS APPLICATIONS, 2009, 19 (05) :117-+
[3]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[4]   Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance [J].
Hsu, Allen ;
Wang, Han ;
Kim, Ki Kang ;
Kong, Jing ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (08) :1008-1010
[5]   Contact resistance in top-gated graphene field-effect transistors [J].
Huang, Bo-Chao ;
Zhang, Ming ;
Wang, Yanjie ;
Woo, Jason .
APPLIED PHYSICS LETTERS, 2011, 99 (03)
[6]   First-principles study of the interaction and charge transfer between graphene and metals [J].
Khomyakov, P. A. ;
Giovannetti, G. ;
Rusu, P. C. ;
Brocks, G. ;
van den Brink, J. ;
Kelly, P. J. .
PHYSICAL REVIEW B, 2009, 79 (19)
[7]   Sub 50 nm InPHEMT device with Fmax greater than 1 THz [J].
Lai, R. ;
Mei, X. B. ;
Deal, W. R. ;
Yoshida, W. ;
Kim, Y. M. ;
Liu, P. H. ;
Lee, J. ;
Uyeda, J. ;
Radisic, V. ;
Lange, M. ;
Gaier, T. ;
Samoska, L. ;
Fung, A. .
2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, :609-+
[8]   InAs/AlSb HEMT and its application to ultra-low-power wideband high-gain low-noise amplifiers [J].
Ma, Bob Yintat ;
Bergman, Joshua ;
Chen, Peter ;
Hacker, Jonathan B. ;
Sullivan, Gerard ;
Nagy, Gabor ;
Brar, Bobby .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (12) :4448-4455
[9]   Top-Gated Graphene Field-Effect Transistors Using Graphene on Si (111) Wafers [J].
Moon, J. S. ;
Curtis, D. ;
Bui, S. ;
Marshall, T. ;
Wheeler, D. ;
Valles, I. ;
Kim, S. ;
Wang, E. ;
Weng, X. ;
Fanton, M. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (11) :1193-1195
[10]   Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm [J].
Moon, J. S. ;
Curtis, D. ;
Bui, S. ;
Hu, M. ;
Gaskill, D. K. ;
Tedesco, J. L. ;
Asbeck, P. ;
Jernigan, G. G. ;
VanMil, B. L. ;
Myers-Ward, R. L. ;
Eddy, C. R., Jr. ;
Campbell, P. M. ;
Weng, X. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (04) :260-262