Efficient high-order discretization schemes for integral equation methods

被引:0
|
作者
Gedney, SD
Ottusch, J
Petre, P
机构
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:1814 / 1817
页数:4
相关论文
共 50 条
  • [41] High-order compact methods for the nonlinear Dirac equation
    Shu-Cun Li
    Xiang-Gui Li
    Computational and Applied Mathematics, 2018, 37 : 6483 - 6498
  • [42] High-order compact methods for the nonlinear Dirac equation
    Li, Shu-Cun
    Li, Xiang-Gui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6483 - 6498
  • [43] A new class of efficient one-step contractivity preserving high-order time discretization methods of order 5 to 14
    Karouma, Abdulrahman
    Truong Nguyen-Ba
    Giordano, Thierry
    Vaillancourt, Remi
    NUMERICAL ALGORITHMS, 2018, 79 (01) : 251 - 280
  • [44] High-order finite difference methods for the Helmholtz equation
    Singer, I
    Turkel, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 343 - 358
  • [45] A new class of efficient one-step contractivity preserving high-order time discretization methods of order 5 to 14
    Abdulrahman Karouma
    Truong Nguyen-Ba
    Thierry Giordano
    Rémi Vaillancourt
    Numerical Algorithms, 2018, 79 : 251 - 280
  • [46] Efficient High-Order Discretization Methods for Coupled Systems of Singularly Perturbed Parabolic Convection-Diffusion Problems
    Kuldeep
    Kumar, Sunil
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (05)
  • [47] High Order Integral Equation Methods for the Scattering of a Superellipsoid
    Vico, Felipe
    Ferrando-Bataller, Miguel
    Valero-Nogueira, Alejandro
    Berenguer, Antonio
    2014 8TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2014, : 754 - 757
  • [48] High-order schemes based on extrapolation for semilinear fractional differential equation
    Yuhui Yang
    Charles Wing Ho Green
    Amiya K. Pani
    Yubin Yan
    Calcolo, 2024, 61
  • [49] High-order conservative schemes for the nonlinear Schrodinger equation in the semiclassical limit
    Cai, Jiaxiang
    Zhang, Haihui
    APPLIED MATHEMATICS LETTERS, 2023, 144
  • [50] High-Order Compact Difference Schemes for the Modified Anomalous Subdiffusion Equation
    Ding, Hengfei
    Li, Changpin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 213 - 242